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The goal of this paper is to establish Cheeger’s Inequality for d-regular undirected graphs.
Along the way, we prove the Courant-Fischer Theorem for the real finite-dimensional case
and showcase the power of the probabilistic method. The main proof is based on [4], with
some background and examples based on [1], [5], [3]. We assume basic knowledge of linear
algebra and probability, but derive graph theory from fundamentals.

1 Graph fundamentals

Definition 1.1. An undirected graph is a pair of sets G = (V,E), where the elements of
V are called vertices and the elements of E are called edges. G is finite if V,E are finite
sets. In particular

E ⊆ {{u, v} : u, v ∈ V, u 6= v}

For convenience, whenever we define a graph G, fix some labeling of the vertices as
v1, ..., vn where n = |V |. Unless otherwise specified, assume all graphs in this paper are
undirected and finite, and all vector spaces are real, finite-dimensional, and equipped with
the Euclidean dot product.

Definition 1.2. A pair of vertices u, v ∈ V are adjacent if {u, v} ∈ E. Adjacent vertices
are also called neighbors. For a vertex v ∈ V , let the degree deg(v) be the number of
vertices in G adjacent to v. If all vertices of G are adjacent, we say G is complete. If all
vertices in a graph G have degree d, we say G is d-regular.

Definition 1.3 (Adjacency matrix, normalized adjacency matrix). For a graph G with
n = |V |, let its adjacency matrix A ∈ Rn,n be

Aij =

{
1 if {vi, vj} ∈ E
0 otherwise

For G d-regular, let its normalized adjacency matrix M = A/d.

Notice for undirected graphs A,M are symmetric by construction, and we have A,M ∈
Rn,n. It also follows directly that
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Proposition 1.1. For a d-regular graph G with n = |V |, for all i, j, we have that

n∑
k=1

Aik =
n∑

k=1

Akj = d

n∑
k=1

Mik =
n∑

k=1

Mkj = 1

Example 1.1. The following graph is 3-regular:

and has adjacency matrix

A =



0 1 1 1 0 0 0 0
1 0 1 0 1 0 0 0
1 1 0 1 0 0 0 0
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 0 0 0 1 0 1 1
0 0 0 1 1 0 0 1
0 0 0 0 1 1 1 0


which we see is symmetric and satisfies

∑8
k=1Aik =

∑8
k=1Akj = 3.

Definition 1.4. The cycle graph Cn = (V,E) has |V | = n,E = {{vi, vi+1} : i = 1, ..., n−
1} ∪ {{1, n}}.

Definition 1.5. The complete graph Kn = (V,E) has |V | = n,E = {{u, v} : u, v ∈
V, u 6= v}.

Definition 1.6 (Cuts and partitions). A partition P = (X1, ..., Xn) of sets Xi is a
collection of disjoint subsets Xi ⊆ X with ∪iXi = X. In other words, each element of X
is in exactly one subset Xi. A cut (S, V − S) of a graph G = (V,E) is a partition of V
into two subsets. Let the set of crossing edges E(S, V − S) ⊆ E be the set of edges (u, v)
with u ∈ S, v ∈ V − S. (note that we use − in this context to denote set difference) A
nontrivial cut (S, V − S) is one where both subsets are non-empty.
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2 Eigenvalues of graphs

Definition 2.1. For M a self-adjoint operator over an inner product space V = Rn, and
a nonzero x ∈ V, let Rayleigh’s quotient be

R(x) =
〈x,Mx〉
||x||2

Theorem 2.1 (Courant-Fischer Theorem). Let M be a self-adjoint operator over an
inner product space V = Rn with eigenvalues λ1 ≥ ... ≥ λn repeated according to their
multiplicities and corresponding eigenvectors e1, ..., en. Then

λ1 = max
x 6=0

R(x)

and in general

λk = max
x 6=0

x⊥e1,...,x⊥ek−1

R(x)

Proof. By the Real Spectral Theorem we know e1, ..., en form a basis of V = Rn. For any
nonzero x ∈ V (note ||x||2 = 0 iff x = 0), we can write

x =
n∑

i=1

〈x, ei〉ei

〈x,Mx〉 = 〈
n∑

i=1

〈x, ei〉ei,
n∑

i=1

λi〈x, ei〉ei〉 =
n∑

i=1

〈x, ei〉〈ei, λiei〉 =
n∑

i=1

〈x, ei〉2λi

||x||2 = 〈
n∑

i=1

〈x, ei〉ei,
n∑

i=1

〈x, ei〉ei〉 =
n∑

i=1

〈x, ei〉2

Thus

x =
〈x,Mx〉
||x||2

=

∑n
i=1〈x, ei〉2λi∑n
i=1〈x, ei〉2

≤
∑n

i=1〈x, ei〉2λ1∑n
i=1〈x, ei〉2

= λ1

We also have

〈e1,Me1〉
||e1||2

= λ1

so the sup is achieved and thus the max exists. To get the case for general k, we see that
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x ⊥ e1, ..., x ⊥ ek−1 implies 〈x, ei〉 = 0 for all i < k so we can similarly write

x =
n∑

i=k

〈x, ei〉ei

〈x,Mx〉 =
n∑

i=k

〈x, ei〉2λi

||x||2 =
n∑

i=k

〈x, ei〉2

x =
〈x,Mx〉
||x||2

=

∑n
i=k〈x, ei〉2λi∑n
i=k〈x, ei〉2

≤
∑n

i=k〈x, ei〉2λk∑n
i=k〈x, ei〉2

= λk

and we have

〈ek,Mek〉
||ek||2

= λk

so the sup is achieved and thus the max exists.

Proposition 2.1. Let G = (V,E) be a d-regular graph and M be its normalized adjacency
matrix. Let n = |V |, and let the eigenvalues of M be λ1 ≥ ... ≥ λn repeated according to
their multiplicities and corresponding eigenvectors be e1, ..., en. Then λ = 1, e1 = 1.

Proof. Since M has rows that sum to 1 and all entries non-negative, we can fix a λ-
eigenvector v = x1f1 + ...+xnfn where fi is the standard basis, and we see that Mv = λv
implies mi1x1 + ... + minxn = λxi for all i, so we can take k such that xk ≥ xi for all i.
|xk| > 0 follows from v nonzero so we can write

|λ| = |x1f1 + ...+ xnfn|
|xk|

≤ ak1

∣∣∣∣x1xk
∣∣∣∣+ ...+ akn

∣∣∣∣xnxk
∣∣∣∣

≤ ak1 + ...+ ank

= 1

and it is easy to see that taking v = f1 + ... + fn = 1 gives a 1-eigenvector of M , so for
all other eigenvalues λ′, 1 ≥ λ′ so 1 = λ1.

This allows us to write the previous result in a more convenient form for use in proving
Cheeger’s inequality:

Proposition 2.2. Let G = (V,E) be d-regular with normalized adjacency matrix M ,
|V | = n, eigenvalues λ1 ≥ ... ≥ λn repeated according to their multiplicities

λ2 = max
x 6=0
x⊥1

xTMx

xTx
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Proof. M ∈ Rn,n as an operator is self-adjoint by being symmetric and real (note or-
thonormality of the standard basis), so we can apply the Courant-Fischer Theorem with
the inner product 〈u, v〉 = uTv on k = 2, and substitute e1 = 1 from 2.1.

Example 2.1. The Courant-Fischer Theorem allows us to bound λ2 without any explicit
computation of eigenvalues. Consider Cn, and take a vector with a high Rayleigh quotient
R(x), such as the one given by

xi =

{
i− n/4 if i ≤ n/2

3n/4− i if i > n/2

which we can verify satisfies
∑

i xi 6= 0 so x ⊥ 1, and x 6= 0. From this we can compute

(Mx)i =


1− n/4 if i = 1, n

n/4− 1 if i = n/2, n/2 + 1

xi otherwise

since (Mx)i = 1
2
(xi−1 + xi+1) with xn in place of i − 1 when i = 1 and x1 in place of

i+ 1 when i = n. Then, denoting a polynomial expression of n with degree at most k by
P (nk), it is easy to see that

xTMx− xTx =
∑
i=1,n

[(i− n/4)2 − (i− n/4)(1− n/4)]+∑
i=n/2,n/2+1

[(3n/4− i)2 − (3n/4− i)(n/4− 1)] = P (n)

xTx =

n/2∑
i=1

(i− n/4)2 +
n∑

i=n/2+1

(3n/4− i)2 = P (n3)

so we get

R(x) =
xTMx

xTx
=
xTx+ P (n)

xTMx
= 1 +

P (n)

P (n3)
= 1 +

1

P (n2)

λ2 = max
x′ 6=0
x′⊥1

R(x′) ≥ R(x) = 1 +
1

P (n2)

giving the asymptotic bound λ2 ≥ 1 + 1
P (n2)

. We will see why this is considered a high

R(x) and a strong bound once we prove the Cheeger inequality.

3 Easy direction of Cheeger’s inequality

Definition 3.1 (Conductance and edge expansion). Given a d-regular graph G = (V,E)
and a nontrivial cut (S, V −S), let the edge expansion h(S) and conductance φ(S) of the
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cut be

h(S) =
|E(S, V − S)|

dmin(|S|, |V − S|)

φ(S) =
|E(S, V − S)|
d
|V | |S||V − S|

and the conductance φ(G) and edge expansion h(G) of G be

h(G) = min
S
h(G)

φ(G) = min
S
φ(G)

with the min taken over all nontrivial cuts (S, V − S) of G. Note in this context we will
sometimes use just S to denote a cut (S, V − S). The edge expansion h is also called
the Cheeger constant or isoperimetric number, and the conductance φ is also called the
sparsity.

We can quickly show a relation between these two quantities using their definitions.

Proposition 3.1. Given a graph G, we can write

h(G) ≤ φ(G) ≤ 2h(G)

Proof. Fix a nontrivial cut (S, V − S) of G, and we see that |S|, |V − S| ≤ |V | and thus

min(|S|, |V −S|) ≥ |S||V−S|
|V | . We also see that at least one of |S|, |V −S| ≤ |V |/2. WLOG

let it be |S|, so |V − S|/|V | ≥ 1/2 and thus |S||V−S||V | ≥ |S|/2 = 1
2

min(|S|, |V − S|). (it is

easy to see that an analogous line of reasoning leads to the same result for |V−S| ≤ |V |/2).
This gives us

min(|S|, |V − S|) ≥ |S||V − S|
|V |

≥ 1

2
min(|S|, |V − S|)

|E(S, V − S)|
dmin(|S|, |V − S|)

≤ |E(S, V − S)|
d
|V | |S||V − S|

≤ 1

2

|E(S, V − S)|
dmin(|S|, |V − S|)

h(S) ≤ φ(S) ≤ 2h(S)

Since for fixed n = |V |, the functions min(x, n − x) and x(n − x) taken on x ∈ (0, n)
monotonically decrease together away from a shared maximum at x = n/2, the same cut
must minimize both h(G) and φ(G). Letting that cut be S gives h(G) = h(S), φ(G) =
φ(S) and thus h(G) ≤ φ(G) ≤ 2h(G).

The Cheeger inequality gives us a relation between h(G) and λ2. We start by proving
the easy direction, the lower bound for h(G).
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Proposition 3.2. For a d-regular graph G = (V,E) with n = |V | and eigenvalues λ1 ≥
... ≥ λn repeated according to their multiplicities we have

1− λ2 ≤ φ(G)

Proof. We can compactly represent a subset, and thus a nontrivial cut S, by a bit vector
x ∈ {0, 1}n−{0,1} where xi = 1 if vi ∈ S and xi = 0 otherwise. Note that the removal of
{0,1} corresponds to nontriviality of cuts. Then {xi, xj} ∈ E(S, V − S) iff |xi − xj| = 1,
so we can write

|E(S, V − S)| =
∑
{i,j}∈E

|xi − xj|

=
1

2

∑
i,j

Ai,j|xi − xj|

=
d

2

∑
i,j

Mi,j|xi − xj|

where the constant 1/2 comes from every edge {u, v} ∈ E being counted twice in the
sum. Since |S||V − S| = E ′(S, V − S) for the complete graph Kn with adjacency matrix
A′ with diagonal entries 0 and all other entries 1, we get

|S||V − S| = 1

2

∑
i,j

A′i,j|xi − xj|

=
1

2

∑
i,j

|xi − xj|

Note that these expressions involving |xi − xj| are actually closely related to our earlier
work with λ2 with inner products, since∑

i,j

Mij(xi − xj)2 =
∑
i,j

Mij(x
2
i − 2xixj + x2j)

=
∑
i

x2i (
∑
j

Mij +
∑
j

Mji)− 2
∑
i,j

Mijxixj

= 2xTx− 2xTMx

and ∑
i,j

(xi − xj)2 =
∑
i,j

(x2i − 2xixj + x2j)

= 2n
∑
i

x2i − 2
∑
i,j

xixj

= 2nxTx− 2(
∑
i

xi)
2
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Note that when x ⊥ 1, we have xT1 =
∑

i xi = 0, and thus∑
i,j

(xi − xj)2 = 2nxTx

1

n

∑
i,j

(xi − xj)2 = 2xTx

In particular, with x 6= 0 and thus xTx 6= 0 we can write

2xTMx = 2xTx−
∑
i,j

Mij(xi − xj)2

xTMx

xTx
= 1−

∑
i,j Mij(xi − xj)2

2xTx

max
x 6=0
x⊥1

xTMx

xTx
= 1−min

x 6=0
x⊥1

∑
i,j Mij(xi − xj)2

2xTx

1− λ2 = min
x 6=0
x⊥1

∑
i,j Mij(xi − xj)2

2xTx

= min
x 6=0
x⊥1

∑
i,j Mij(xi − xj)2

1
n

∑
i,j(xi − xj)2

From above we know x ⊥ 1 is equivalent to
∑

i xi = 0, and we see that this expression
is invariant under scaling or shifting x by a constant, as x′ = x+ k1 satisfies |x′i − x′j| =
|xi − xj| for all i, j, and any scalar multiple can be factored out in both the numerator
and the denominator. Thus, we can take the min over all x 6= k1, k ∈ Z (which gives∑

i,j |xi − xj| = 0) where for any x with
∑

i xi 6= 0 we can instead evaluate the same

expression over x′ = x− 1
n

∑
i x
′
i satisfying

∑
i x
′
i = 0 and thus x′ ⊥ 1. Thus we can write

1− λ2 = min
x 6=k1,k∈Z

∑
i,j Mij(xi − xj)2

1
n

∑
i,j(xi − xj)2

and since Rn − {k1, k ∈ Z} ⊇ {0, 1}n − {0,1}, we get

1− λ2 ≤ min
x∈{0,1}n−{0,1}

∑
i,j Mij(xi − xj)2

1
n

∑
i,j(xi − xj)2

= min
S

∑
i,j Mij(xi − xj)2

1
n

∑
i,j(xi − xj)2

= min
S

1
2
|E(S, V − S)|
d
2n
|S||V − S|

= φ(G)

where the min is taken over all nontrivial cuts (S, V − S) of G.

This gives us
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Proposition 3.3 (Easy direction of Cheeger’s inequality). For a d-regular graph G =
(V,E) with eigenvalues λ1 ≥ ... ≥ λn repeated according to their multiplicities we have

1− λ2
2
≤ h(G)

Proof. By 3.2 and 3.1 we get 1− λ2 ≤ φ(G) ≤ 2h(G).

4 Difficult direction of Cheeger’s inequality

To prove the other direction, we use the probabilistic method.

Proposition 4.1. Let G = (V,E) be d-regular with normalized adjacency matrix M and
eigenvalues λ1 ≥ ... ≥ λn repeated according to their multiplicities. Also let n = |V |, x ∈
Rn such that x 6= 0, x ⊥ 1. Then there exists a nontrivial cut (S, V − S) of G satisfying

h(S) ≤
√

2δ

where

δ =

∑
i,j Mij(xi − xj)2

1
n

∑
i,j(xi − xj)2

Proof. Fix some arbitrary labeling of vertices by v1, ..., vn. Intuitively, d-regularity gives
us some freedom with the choice of cuts, and it turns out it suffices to consider the n− 1
cuts of the form (S, V −S) where S = {v1, ..., vi}, i < n. In particular, we will determine
S by the value of a real, continuous random variable t ∈ [x1, xn] with probability density
function f(t) = 2|t|. This gives

P[a ≤ t ≤ b] =

∫ b

a

2|t|dt

for x1 ≤ a ≤ b ≤ xn. We see that for a, b ≥ 0

P[t ∈ [a, b]] =

∫ b

a

2t = b2 − a2 = |a2 − b2|

for a, b ≤ 0

P[t ∈ [a, b]] = −
∫ b

a

2t = −(b2 − a2) = |a2 − b2|

and for a ≤ 0, b ≥ 0

P[t ∈ [a, b]] = −
∫ 0

a

2t+

∫ b

0

2t = a2 + b2
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so we conclude

P[t ∈ [a, b]] =

{
|a2 − b2| if a, b have the same sign

a2 + b2 otherwise

and we let S = {vi : xi ≤ t}.

We can also make a few simplifying assumptions. Since we only look at sums and products
of xi for all i, WLOG reorder M and x such that x1 ≤ ... ≤ xn. Furthermore, in the
proof for 3.2 we showed that δ is invariant under scaling or shifting x, so WLOG we can
shift (i.e. by adding −xbn/2c) so that the entry xbn/2c = 0 and then scale (i.e. noting that
x 6= 0 gives at least one of x1, xn 6= 0 so x21 + x2n 6= 0, by multiplying by 1√

x2
1+x2

n

) so that

x21 + x2n = 1.

Then we can apply linearity of expectation, although we have to be careful to not over-
count in the case where |S| = |V −S|. Here, we choose to only count the contribution by
members of |S| in that case, so letXi be the event that vi in the strictly smaller subset or |S| =
|V − S|, vi ∈ S. Thus

E[min(|S|, |V − S)] =
∑
i

E[1Xi
] =

∑
i

P[Xi]

When n is odd, the special case |S| = |V − S| is impossible. Note that for i < n/2, vi ∈
V − S implies |V − S| > n/2 and thus V − S is the larger subset, so Xi is equivalent
to vi ∈ S with |S| < n/2, which is equivalent to t ∈ [xi, 0). It is easy to see that the
analogous statement holds, that for i > n/2, Xi is equivalent to t ∈ (0, xi]. We see

P[t ∈ [xi, 0)] = P[t ∈ (0, xi]] = P[t ∈ [0, xi]] = x2i

since the distribution is continuous, so

E[min(|S|, |V − S)] =
∑
i

x2i

When n is even, for i ≤ n/2, Xi occurs when either |V −S| > n/2 and vi ∈ S from above,
or |S| = |V − S| = n/2 and vi ∈ S. Thus, Xi is equivalent to vi ∈ S with |S| ≤ n/2,
which is equivalent to t ∈ [xi, xn/2+1). It is easy to see that the analogous statement
holds, that for i > n/2, Xi is equivalent to t ∈ (xn/2+1, xi]. We see

E[min(|S|, |V − S)] =

n/2∑
i=1

P[t ∈ [xi, xn/2+1)] +
n∑

i=n/2+1

P[t ∈ (xn/2+1, xi]]

=

n/2∑
i=1

x2i + x2n/2+1 +
n∑

i=n/2+1

x2i − x2n/2+1

=
∑
i

x2i
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Next we see the why this distribution is especially useful, as it allows for an intuitive view
of crossing edges: an edge is a crossing edge if t falls between the components of x that
correspond to the vertices. In other words, {vi, vj} ∈ E(S, V − S) with WLOG i < j iff
t ∈ [xi, xj]. This probability is either |x2i − x2j | or x2i + x2j , which we can bound by

P[{vi, vj} ∈ E(S, V − S)] ≤ |xi − xj|(|xi|+ |xj|)

since

|x2i − x2j | = |xi − xj||xi + xj| ≤ |xi − xj|(|xi|+ |xj|)
x2i + x2j ≤ (|xi|+ |xj|)|xi|+ (|xi|+ |xj|)|xj| = |xi − xj|(|xi|+ |xj|)

where the first line follows from the Triangle Inequality and the second from xi, xj having
different signs, which yields |xi − xj| = |xi|+ |xj| ≥ |xi|, |xj|.

We can substitute this into a larger expression for expectation using linearity of expec-
tation and indicator variables to get

E[
1

d
E(S, V − S)] =

1

d
E[

1

2

∑
i,j

Aij1{vi,vj}∈E(S,V−S)]

=
1

2

∑
i,j

MijE[1{vi,vj}∈E(S,V−S)]

=
1

2

∑
i,j

MijP[{vi, vj} ∈ E(S, V − S)]

≤ 1

2

∑
i,j

Mij|xi − xj|(|xi|+ |xj|)

≤ 1

2

√∑
i,j

Mij(xi − xj)2
√∑

i,j

Mij(|xi|+ |xj|)2

where at the last step we apply Cauchy-Schwarz using the Euclidean dot product on
a =

∑
i,j

√
Mij(xi − xj), b =

∑
i,j

√
Mij(|xi|+ |xj|), getting |〈a, b〉| ≤ ||a||||b||.

Recall from our proof of 3.2 that when x ⊥ 1, x 6= 0, we have
∑

i,j(xi − xj)2 = 2n
∑

i x
2
i .

Rewriting our definition of δ, we get

δ =

∑
i,j Mij(xi − xj)2

1
n

∑
i,j(xi − xj)2∑

i,j

Mij(xi − xj)2 = δ
1

n

∑
i,j

(xi − xj)2

= 2δ
∑
i

x2i

Also note 2x2i + 2x2j − (|xi|+ |xj|)2 = (|xi| − |xj|)2 ≥ 0 implies 2x2i + 2x2j ≥ (|xi|+ |xj|)2,
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so we get ∑
i,j

Mij[|xi|+ |xj|]2 ≤
∑
i,j

Mij(2x
2
i + 2x2j)

= 2
∑
i

(
∑
j

Mijx
2
j +

∑
j

Mjix
2
j)

= 4
∑
i

x2i

by properties of M . We thus find that

E[
1

d
E(S, V − S)] ≤ 1

2

√∑
i,j

Mij(xi − xj)2
√∑

i,j

Mij[|xi|+ |xj|]2

≤ 1

2

√
2δ
∑
i

x2i

√
4
∑
i

x2i

=
√

2δ
∑
i

x2i

Combining this with our previous result for E[min(|S|, |V − S)], we get

E[1
d
E(S, V − S)]

E[min(|S|, |V − S)]
≤
√

2δ
∑

i x
2
i∑

i x
2
i

=
√

2δ

E[
1

d
E(S, V − S)−

√
2δmin(|S|, |V − S)] ≤ 0

from linearity of expectation. Thus there must exist a nontrivial cut (S, V −S) satisfying

1

d
E(S, V − S)−

√
2δmin(|S|, |V − S) ≤ 0

h(S) ≤ E(S, V − S)

dmin(|S|, |V − S)
≤
√

2δ

Theorem 4.1 (Cheeger’s inequality). For a d-regular graph G = (V,E) with eigenvalues
λ1 ≥ ... ≥ λn repeated according to their multiplicities we have

1− λ2
2
≤ h(G) ≤

√
2(1− λ2)

Proof. The left-hand inequality comes from 3.3. To get the right-hand inequality, we
can apply 4.1 to an eigenvector x = e2 of λ2, which satisfies x ⊥ 1, x 6= 0. This yields
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h(G) ≤ h(S) ≤
√

2δ and in particular for x = e2 we have

δ =

∑
i,j Mij(xi − xj)2

1
n

∑
i,j(xi − xj)2

=
2xTx− 2xTMx

2xTx

=
2xTx(1− λ2)

2xTx
= 1− λ2

where the second step comes from equivalent expressions for the numerator and denom-
inator expressions derived in the proof of 3.2. This gives the desired

h(G) ≤
√

2(1− λ2)

Example 4.1. Cheeger’s inequality allows us to approximate h(G) for arbitrary G. Take
the complete graph K4 with

A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


and from the respective normalized adjacency matrix M = A/4 we can compute the
eigenvalue λ1 = 1 with eigenvectors (1, 1, 1, 1) and the eigenvalue λ2 = λ3 = λ4 = −1/4
with eigenvectors (−1, 0, 0, 1), (−1, 0, 1, 0), (−1, 1, 0, 0). K4 is 3-regular, so substituting
for λ2, Cheeger’s inequality gives us the approximation 1 ≤ h(G) ≤ 2.

Example 4.2 (Tightness of Cheeger’s inequality). Recall that from our application of
the Courant-Fischer Theorem in 2.1 we know

λ2 ≥ 1 +
1

P (n2)

Any non-trivial cut (S, V − S) has E(S, V − S) = 2, so the cut that minimizes h(S) will
maximize min(|S|, |V − S|) and thus have |S| = bn/2c. This gives h(G) = 2

2bn/2c ≥ 2/n.

Note Cn is 2-regular, so Cheeger’s inequality gives
√

2(1− λ2) ≥ h(G) ≥ 2/n and thus
λ2 ≤ 1−2/n2 = 1+ 1

P (n2)
. Thus, the upper bound of Cheeger’s inequality is asymptotically

tight, and this tightness is achieved in cycles.

Example 4.3 (Sparsest cut problem). Given a graph G = (V,E), the problem of deter-
mining the cut (S, V − S) that achieves the minimum h(S) = h(G) has been shown to
be NP-hard, meaning there is no known polynomial-time algorithm that solves it. ([2]
presents a proof) Note the name of the problem actually alludes to the sparsity φ, since
h, φ are sometimes used interchangeably as we have seen that they are related quantities
minimized by the same cuts. However, the proof of the Cheeger inequality from 4.1 sug-
gests a polynomial-time algorithm for finding a relatively small cut, where we guarantee
h ≤

√
2(1− λ2):

13



1. Compute λ2 and a corresponding eigenvector x

2. Label the vertices such that x1 ≥ ... ≥ xn

3. Try all cuts of the form (S, V − S) = ({v1, ..., vi}, {vi+1, ..., vn}) and return the one
with smallest h(S)

which takes advantage of known polynomial-time algorithms for computing eigenvalues
and eigenvectors of real symmetric matrices, which is the runtime-limiting step.

For instance, applying this algorithm to the graph from 1.1, we get λ2 =
√

5/3 and

with the vertex labels representing the entries of x and the best cut represented by the
dotted line (the computation is by [3]). We can verify that this cut has h(S) = 2

3(4)
= 1

6

and that this satisfies 0.127 ≈ 1−
√
5/3

2
≤ 1

6
≤
√

2(1−
√

5/3) ≈ 0.714.
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