Spectral Graph Theory and Cheeger’s Inequality

Michael Tang

The goal of this paper is to establish Cheeger’s Inequality for d-regular undirected graphs.
Along the way, we prove the Courant-Fischer Theorem for the real finite-dimensional case
and showcase the power of the probabilistic method. The main proof is based on [4], with
some background and examples based on [I], [5], [3]. We assume basic knowledge of linear
algebra and probability, but derive graph theory from fundamentals.

1 Graph fundamentals

Definition 1.1. An undirected graph is a pair of sets G = (V, E), where the elements of
V' are called vertices and the elements of E are called edges. G is finite if V, E are finite
sets. In particular

E C {{u,v}:u,v € Viu # v}

For convenience, whenever we define a graph G, fix some labeling of the vertices as
U1, ..., U where n = |V|. Unless otherwise specified, assume all graphs in this paper are
undirected and finite, and all vector spaces are real, finite-dimensional, and equipped with
the Fuclidean dot product.

Definition 1.2. A pair of vertices u,v € V are adjacent if {u,v} € E. Adjacent vertices
are also called neighbors. For a vertex v € V, let the degree deg(v) be the number of
vertices in G adjacent to v. If all vertices of G are adjacent, we say G is complete. If all
vertices in a graph G have degree d, we say G is d-regular.

Definition 1.3 (Adjacency matrix, normalized adjacency matrix). For a graph G with
n = |V, let its adjacency matric A € R™" be

A = {1 if {vi,v;} € E

0 otherwise

For G d-regular, let its normalized adjacency matric M = A/d.

Notice for undirected graphs A, M are symmetric by construction, and we have A, M &
R™". It also follows directly that



Proposition 1.1. For a d-reqular graph G with n = |V|, for all i, j, we have that
S =3y =
k=1 k=1
DL SET
k=1 k=1

Example 1.1. The following graph is 3-regular:

and has adjacency matrix

SO OO == =O
O OO OO
SO OO O =
O R OO O = O
_ =0 OOk O
_ O Ok OO OO
—_ O O, O OO
O = = =) OO oo

which we see is symmetric and satisfies 22:1 A, = 22:1 Ay = 3.

Definition 1.4. The cycle graph C,, = (V. E) has |V| =n, E = {{vi,vi1}:i=1,...,n—
1yu{{1,n}}.

Definition 1.5. The complete graph K,, = (V,E) has |V| = n, E = {{u,v} : u,v €
Viu # v},

Definition 1.6 (Cuts and partitions). A partition P = (Xq,...,X,) of sets X; is a
collection of disjoint subsets X; C X with U; X; = X. In other words, each element of X
is in exactly one subset X;. A cut (S,V —S) of a graph G = (V, E) is a partition of V
into two subsets. Let the set of crossing edges E(S,V —S) C E be the set of edges (u,v)
with uw € S;,v € V. — S. (note that we use — in this context to denote set difference) A
nontrivial cut (S,V — S) is one where both subsets are non-empty.



2 Eigenvalues of graphs

Definition 2.1. For M a self-adjoint operator over an inner product space ¥V = R", and
a nonzero x € V, let Rayleigh’s quotient be

(x, Mx)

) = e

Theorem 2.1 (Courant-Fischer Theorem). Let M be a self-adjoint operator over an
mner product space V = R™ with eigenvalues Ay > ... > A, repeated according to their
multiplicities and corresponding eigenvectors ey, ..., e,. Then

A= max R(x)
and in general
Ak = max R(x)

zley,..xlex_1

Proof. By the Real Spectral Theorem we know ey, ..., e, form a basis of ¥V = R". For any
nonzero r € V (note ||z||> = 0 iff z = 0), we can write

n

r = Z(m,ez)ei

(x, Mz) = (Z(x,ei>ei,2)\i<x, ei)e;) = Z($,€i>(€¢, Ai€i) = Z(x,@-) i
lz|* = <Z<$a€i>€i>z<$»€i>€i> p (z,e:)”

Thus

<ZL‘,M:U> Z?:l(x’ 6i>2)‘i < Z?:1<x7€i>2/\1

xr = —= n T :)\1

|||[2 Yor(we)?r T 3T (@, e)?
We also have

<617 Mel>

[lexl]?

so the sup is achieved and thus the max exists. To get the case for general k, we see that



x Lep, ..,z L ey q implies (x,e;) =0 for all i < k so we can similarly write

n

x = Z(m,ei)ei

i=k
n

(x, Mx) = Z(x, ei)

2] =z e:)

i=k
_ <x>Mx> _ Z?:k<$’ei>2>‘i < Z?:k<$’ei>2>‘k _ )\k
|2 Silmen? T Yi(we)?

and we have

<6k7 M@k)

[lexll?

-\

so the sup is achieved and thus the max exists. O

Proposition 2.1. Let G = (V, E) be a d-reqular graph and M be its normalized adjacency
matriz. Let n = |V|, and let the eigenvalues of M be Ay > ... > N, repeated according to
their multiplicities and corresponding eigenvectors be ey, ...,e,. Then A =1,e; = 1.

Proof. Since M has rows that sum to 1 and all entries non-negative, we can fix a \-
eigenvector v = x1 f1 + ... +x,, f, where f; is the standard basis, and we see that Mv = \v
implies m;1x1 + ... + my,x, = Ax; for all 7, so we can take k such that z, > x; for all 7.
|z| > 0 follows from v nonzero so we can write

_ lz1f1 + .. + 2 fi

A
Al iz
n
<ak1 — |+ .+ Qg | —
T T
< Qg A Qg

=1

and it is easy to see that taking v = f; + ... + f, = 1 gives a l-eigenvector of M, so for
all other eigenvalues X', 1 > X so 1 = Ay. O

This allows us to write the previous result in a more convenient form for use in proving
Cheeger’s inequality:

Proposition 2.2. Let G = (V, E) be d-reqular with normalized adjacency matriz M,
|V | = n, eigenvalues Ay > ... > X\, repeated according to their multiplicities

' Max
A9 = max -
zx#0 't X
zl1
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Proof. M € R™" as an operator is self-adjoint by being symmetric and real (note or-
thonormality of the standard basis), so we can apply the Courant-Fischer Theorem with
the inner product (u,v) = u’v on k = 2, and substitute ¢; = 1 from ]

Example 2.1. The Courant-Fischer Theorem allows us to bound A\, without any explicit
computation of eigenvalues. Consider C,,, and take a vector with a high Rayleigh quotient
R(z), such as the one given by

i—n/4 ifi<n/2
€T; =
3n/d—i ifi>n/2

which we can verify satisfies > . ; # 0 so z L 1, and  # 0. From this we can compute

1—n/4 ifi=1n
(Mz); =qn/4—1 ifi=n/2,n/2+1

T; otherwise

since (Mx); = %(:1:1-,1 + x;41) with x, in place of i — 1 when ¢ = 1 and x; in place of
1+ 1 when ¢ = n. Then, denoting a polynomial expression of n with degree at most k by
P(nk), it is easy to see that

2T My — 2T = Z (i —n/4)? — (i —n/4)(1 — n/4)]+

ST [Bn/4— i) — (3n/4—i)(n/4 - )] = P(n)
i=n/2,n/2+1

n/2 n

pTr=> (i-n/4)*+ Y  (3n/4—i)* = P(n)
i=1 i=n/2+1

so we get
2™z z"x+ P(n) P(n) 1
R(z) = eTe  oTMzx L+ P(n3) L+ P(n?)
, B 1
Ay = max R(z') > R(x) =1+ Pn2)

/11

giving the asymptotic bound Ay > 1 + %. We will see why this is considered a high
R(z) and a strong bound once we prove the Cheeger inequality.

3 Easy direction of Cheeger’s inequality

Definition 3.1 (Conductance and edge expansion). Given a d-reqular graph G = (V, E)
and a nontrivial cut (S,V —5), let the edge expansion h(S) and conductance ¢(S) of the

5



cut be

__|ESV =5
MS) = dmin(|S|,|V —95])
|E(S,V = 9)|
A sV S|

Vi
and the conductance ¢(G) and edge expansion h(G) of G be
h(G) = msin h(G)
4(G) = min6(G)
with the min taken over all nontrivial cuts (S,V —S) of G. Note in this context we will
sometimes use just S to denote a cut (S,V — S). The edge expansion h is also called

the Cheeger constant or isoperimetric number, and the conductance ¢ is also called the
sparsity.

We can quickly show a relation between these two quantities using their definitions.

Proposition 3.1. Given a graph G, we can write

hG) < ¢(G) < 2h(G)

Proof. Fix a nontrivial cut (S,V — S) of G, and we see that |S|,|V — S| < |V| and thus
min(|S], |V —5|) > M We also see that at least one of |S|, |V — S| < |V]/2. WLOG

let it be |S|, so |V — S|/|V| > 1/2 and thus M > [5|/2 = $min(]S], |V = S). (it is
easy to see that an analogous line of reasoning leads to the same result for [V -S| < |V]/2).
This gives us

S|V — s
|”|T| > 2m1n(|S| v —5)

ESYV =9 _|ESV=5)| _1_|BSYV=S9)
dmin([S[, [V~ S) ~ ZS|[V =8| = 2dmin(j5],[V - 5])

h(S) < ¢(S) < 2h(S5)

min(|S], [V = S]) =

Since for fixed n = |V, the functions min(xz,n — x) and z(n — z) taken on = € (0,n)
monotonically decrease together away from a shared maximum at x = n/2, the same cut
must minimize both h(G) and ¢(G). Letting that cut be S gives h(G) = h(S), d(G) =
¢(S) and thus h(G) < ¢(G) < 2h(G). O

The Cheeger inequality gives us a relation between h(G) and Ay. We start by proving
the easy direction, the lower bound for h(G).



Proposition 3.2. For a d-reqular graph G = (V, E) with n = |V| and eigenvalues A\ >
.. >\, repeated according to their multiplicities we have

1 =X < 9(G)

Proof. We can compactly represent a subset, and thus a nontrivial cut S, by a bit vector
x € {0,1}"*—{0,1} where z; = 1 if v; € S and x; = 0 otherwise. Note that the removal of
{0,1} corresponds to nontriviality of cuts. Then {z;,z;} € E(S,V —9) iff |z; — z;| = 1,
SO we can write

E(S,V=8)= > |u—

{i,j}€E

p 2J
= §ZM1J‘$Z — X
1,

where the constant 1/2 comes from every edge {u,v} € E being counted twice in the
sum. Since |S||V — S| = E'(S,V — S) for the complete graph K,, with adjacency matrix
A’ with diagonal entries 0 and all other entries 1, we get

S|V — S| = ZA |z —

= %Z i — ]
i\j

Note that these expressions involving |z; — z;| are actually closely related to our earlier
work with Ay with inner products, since

Z Mij (ZL’l Z Mz] QJIZ.I'J + x; )
Y]
= Zl’l ZMZ]+ZMJZ) _QZMijinj
i J J 0,J

=227 — 22" Mz

and

Z(Il — ;) = Z(x2 — 2,15 + x7)
1,7
= Zan — QZx x;
=onalx — le



Note that when x L 1, we have 271 = Y.z =0, and thus

Z(mz —x;)? = 2nx’x
0]
1 Z(m —z;)* =22"x
7 i) =
n 4=

In particular, with  # 0 and thus 272 # 0 we can write

20" Mz = 227w — Z M;j(z; — x;)?

1,J

2T Mx B Z” M;j(x; — 25)°
Tz 20T x
2T Mz Dy My — x5)?
max =1—min :
w0 Tz 240 20Tz
xll zl1
Zi,j M;j(z; — x5)°

1 — Xy = min
270 20T g
zll
2
2oy Mz — )
= Imin

if? % Zz;(xz — x;)?

From above we know = L 1 is equivalent to ), z; = 0, and we see that this expression
is invariant under scaling or shifting x by a constant, as 2’ = x + k1 satisfies |z} — 2| =
|z; — x;| for all 4, j, and any scalar multiple can be factored out in both the numerator
and the denominator. Thus, we can take the min over all x # k1, k € Z (which gives
>ijlwi — x;] = 0) where for any z with 37, z; # 0 we can instead evaluate the same
expression over 2’ =z — = 3" 2/ satisfying >, 2 = 0 and thus 2’ 1 1. Thus we can write

Dy M — )
1— X = min T 5
WIS/ Z”(% )

and since R" — {k1,k € Z} D {0,1}" — {0,1}, we get
11— < min Zlm i j2>
z€{0,1}»—{0,1} Py Zi’j(xi — Ij)
3 Miy(wi — y)?

= min
5 % Zzg(xz — z;)?

= min =
S ISV =5
= ¢(G)
where the min is taken over all nontrivial cuts (S,V — S) of G. O]

This gives us



Proposition 3.3 (Easy direction of Cheeger’s inequality). For a d-regular graph G =
(V, E) with eigenvalues \y > ... > \, repeated according to their multiplicities we have
1— X
2

< hWG)

Proof. By [3.2]and [3.1] we get 1 — Xy < ¢(G) < 2h(G). O

4 Difficult direction of Cheeger’s inequality

To prove the other direction, we use the probabilistic method.

Proposition 4.1. Let G = (V, E) be d-reqular with normalized adjacency matrizc M and
eigenvalues Ay > ... > A\, repeated according to their multiplicities. Also let n = |V |,z €
R™ such that © # 0,2 L 1. Then there exists a nontrivial cut (S,V —S) of G satisfying

h(S) < V26
where

5— le M;j(x; — 25)*
5 (T — @)

Proof. Fix some arbitrary labeling of vertices by vy, ..., v,. Intuitively, d-regularity gives
us some freedom with the choice of cuts, and it turns out it suffices to consider the n — 1
cuts of the form (S,V —S) where S = {vy,...,v;},i < n. In particular, we will determine
S by the value of a real, continuous random variable ¢ € [x1, z,] with probability density
function f(t) = 2|¢|. This gives

b
P[agtgb]:/ o[t]dt
for r1 <a <b<x, Wesee that for a,b >0
b
P[te[a,bﬂ:/ 2t = b* — a® = |a® — V?|
for a,b <0
b
]P[te[a,b]]:—/ o = — (1 —a?) = |a? — I

and for a < 0,6 >0

0 b
]P[te[a,b]]:—/ 2t+/ 2% = a2 + b?
a 0



so we conclude

la® — b?| if a,b have the same sign

Pt € [a,b]] = {

a® 4+ b%>  otherwise

and we let S = {v; : x; < t}.

We can also make a few simplifying assumptions. Since we only look at sums and products

of x; for all i, WLOG reorder M and x such that z; < ... < x,. Furthermore, in the

proof for we showed that ¢ is invariant under scaling or shifting x, so WLOG we can

shift (i.e. by adding —z|,/2|) so that the entry |, /5] = 0 and then scale (i.e. noting that
. 2 2 : : 1

x # 0 gives at least one of z1, 2, # 0 so x{ + x;, # 0, by multiplying by \/m) so that

24 2
r] +x, = 1.

Then we can apply linearity of expectation, although we have to be careful to not over-
count in the case where |S| = [V — S|. Here, we choose to only count the contribution by
members of |\S| in that case, so let X; be the event that v; in the strictly smaller subset or |S| =
|V — S|,v; € S. Thus

E[min(]S], [V — 5)] = ZE[lxi] = ZP[X

When n is odd, the special case |S| = |V — S| is impossible. Note that for i < n/2 v; €
V — S implies |V — S| > n/2 and thus V — S is the larger subset, so X; is equivalent
to v; € S with |S| < n/2, which is equivalent to ¢ € [z;,0). It is easy to see that the
analogous statement holds, that for i > n/2, X; is equivalent to ¢ € (0, z;]. We see

Pt € [2;,0)] = P[t € (0,2]] = P[t € [0,2,]] = a7

)

since the distribution is continuous, so
Emin(|S],|V = 8)] =) ]
i

When n is even, for i < n/2, X; occurs when either |V — S| > n/2 and v; € S from above,
or |S| = |V =8| =n/2and v; € S. Thus, X; is equivalent to v; € S with |S| < n/2,
which is equivalent to t € [a:i,xn/gﬂ). It is easy to see that the analogous statement
holds, that for i > n/2, X; is equivalent to t € (2 241, x;]. We see

n/2
E[min(|S], |V — §)] = Z]P’[te[x“:cn/gﬂ + Z Pt € (Tnj2 11, i)
i=n/2+1
n/2
R A ORI
i=n/2+1

_§ : 2
= z;
i

10



Next we see the why this distribution is especially useful, as it allows for an intuitive view
of crossing edges: an edge is a crossing edge if ¢ falls between the components of x that
correspond to the vertices. In other words, {v;,v;} € E(S,V —5) with WLOG i < j iff
t € [x;,x;]. This probability is either |7 — 23| or 7 4 27, which we can bound by

P, v} € E(S,V = 9)] < |oy — zj|(|i| + [;])
since
|2 — 25| = | — gl 4 5] < s — a|(J] + |25))
2} + 2 < (il + gDl + (o] + |25 5] = o — 2] (] + [25])

where the first line follows from the Triangle Inequality and the second from z;, z; having
different signs, which yields |z; — z;| = |z;| + |2 > |@i], |z;].

We can substitute this into a larger expression for expectation using linearity of expec-
tation and indicator variables to get

1 1_1
E[ZE(S,V —5) = -E[5 > Ailiyuyensy-s))
.

1
~ 9 Z MyE[1y, vyep5v-9)]
)]
1
=3 > MiP[{vi, v} € E(S,V = 9)]

0]

1
3 ZMM\% — |(|2i| + |24])

IA

IN

7]
1
3 > M — )2 > Mij(ja| + |ag])?
i,j Y]
where at the last step we apply Cauchy-Schwarz using the Euclidean dot product on
a =2V Mij(wi —5),0 =3 5/ Mij(|wi| + |a;]), getting [{a, b)| < {lal[|[b]]

Recall from our proof of that when z | 1,2 # 0, we have )=, .(2; — ;)? = 2n Y, x7.
Rewriting our definition of d, we get

5— Z” M;j(w; — x5)°
23— xy)?

D My(wi — ) = 5% > (i — ;)
i3 2
= 25235?

Also note 2x7 4 225 — (|z;| + |2;])* = (|z:] — |2;])? > 0 implies 227 + 227 > (Ja] + |2;])?,

11



so we get
> Migllai] + |ay[]* < ZMU (227 + 227)
i,J
—22 2 Myt 3 M,
:42%

by properties of M. We thus find that

[ E(S,V = 5)] ZMU ;) ZMz'j[lxilJrlleP

< 5\/252%2\/42%2

VY

Combining this with our previous result for E[min(|S|, |V — 5)], we get
E[fE(S,V - S
E[;£( )] \/_ Zz x? — V2%
E[min(|S], |V — S)] a2

E%M&V—S%w@&mMWHV—Sﬂgo

from linearity of expectation. Thus there must exist a nontrivial cut (S, V —5) satisfying

ZE(S,V —8) —v26min(|S],|V - 8) <0

E(S,V — S)
M) < TSV =8 =

5

O

Theorem 4.1 (Cheeger’s inequality). For a d-regular graph G = (V, E) with eigenvalues
A > ... >\, repeated according to their multiplicities we have

1;A2§hmqg 21— )

Proof. The left-hand inequality comes from [3.3] To get the right-hand inequality, we
can apply to an eigenvector x = es of Ay, which satisfies x 1. 1,2 # 0. This yields

12



h(G) < h(S) < v/26 and in particular for z = ey we have
5— Zw Mij(z; — x;)?
% Zz](‘rl — ;)2

B 20T — 22T Mz

20T x
2{ET.Z'(1 — )\2)
N 20T
=1-—X

where the second step comes from equivalent expressions for the numerator and denom-
inator expressions derived in the proof of 3.2 This gives the desired

h(G) < /201 — \)
O

Example 4.1. Cheeger’s inequality allows us to approximate h(G) for arbitrary G. Take
the complete graph K, with

e )
— = O
O~ =

1
1
0
1

and from the respective normalized adjacency matrix M = A/4 we can compute the
eigenvalue \; = 1 with eigenvectors (1,1,1,1) and the eigenvalue Ay = A3 = \y = —1/4
with eigenvectors (—1,0,0,1),(—1,0,1,0),(—1,1,0,0). K, is 3-regular, so substituting
for Ay, Cheeger’s inequality gives us the approximation 1 < h(G) < 2.

Example 4.2 (Tightness of Cheeger’s inequality). Recall that from our application of
the Courant-Fischer Theorem in 2.1 we know

1
A > 14+ ——
22 Pln)
Any non-trivial cut (S,V — S) has E(S,V — ) = 2, so the cut that minimizes h(S) will
maximize min(|S|, |V — S]|) and thus have |S| = |n/2]. This gives h(G) = m > 2/n.
Note C,, is 2-regular, so Cheeger’s inequality gives /2(1 — A2) > h(G) > 2/n and thus
Ay <1-2/n% = 1+ﬁ. Thus, the upper bound of Cheeger’s inequality is asymptotically
tight, and this tightness is achieved in cycles.

Example 4.3 (Sparsest cut problem). Given a graph G = (V, E), the problem of deter-
mining the cut (S,V — S) that achieves the minimum h(S) = h(G) has been shown to
be NP-hard, meaning there is no known polynomial-time algorithm that solves it. ([2]
presents a proof) Note the name of the problem actually alludes to the sparsity ¢, since
h, ¢ are sometimes used interchangeably as we have seen that they are related quantities
minimized by the same cuts. However, the proof of the Cheeger inequality from sug-
gests a polynomial-time algorithm for finding a relatively small cut, where we guarantee

h < 1/2(1 = Ap):

13



1. Compute Ay and a corresponding eigenvector x
2. Label the vertices such that z; > ... > z,

3. Try all cuts of the form (S,V —S) = ({v1, ..., v; }, {vit1, ..., vn}) and return the one
with smallest h(S)

which takes advantage of known polynomial-time algorithms for computing eigenvalues
and eigenvectors of real symmetric matrices, which is the runtime-limiting step.

For instance, applying this algorithm to the graph from , we get Ay = v/5/3 and

0.618

&)

with the vertex labels representing the entries of x and the best cut represented by the
dotted line (the computation is by [3]). We can verify that this cut has h(S) = 2 = &

34 6
and that this satisfies 0.127 ~ 1=%5/2 < 1 < /9(1 — \/5/3) ~ 0.714.
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