Spectral Graph Theory and Cheeger's Inequality

Michael Tang

The goal of this paper is to establish Cheeger's Inequality for d-regular undirected graphs. Along the way, we prove the Courant-Fischer Theorem for the real finite-dimensional case and showcase the power of the probabilistic method. The main proof is based on 4], with some background and examples based on [1], [5], 3]. We assume basic knowledge of linear algebra and probability, but derive graph theory from fundamentals.

1 Graph fundamentals

Definition 1.1. An undirected graph is a pair of sets $G=(V, E)$, where the elements of V are called vertices and the elements of E are called edges. G is finite if V, E are finite sets. In particular

$$
E \subseteq\{\{u, v\}: u, v \in V, u \neq v\}
$$

For convenience, whenever we define a graph G, fix some labeling of the vertices as v_{1}, \ldots, v_{n} where $n=|V|$. Unless otherwise specified, assume all graphs in this paper are undirected and finite, and all vector spaces are real, finite-dimensional, and equipped with the Euclidean dot product.

Definition 1.2. A pair of vertices $u, v \in V$ are adjacent if $\{u, v\} \in E$. Adjacent vertices are also called neighbors. For a vertex $v \in V$, let the degree $\operatorname{deg}(v)$ be the number of vertices in G adjacent to v. If all vertices of G are adjacent, we say G is complete. If all vertices in a graph G have degree d, we say G is d-regular.
Definition 1.3 (Adjacency matrix, normalized adjacency matrix). For a graph G with $n=|V|$, let its adjacency matrix $A \in \mathbb{R}^{n, n}$ be

$$
A_{i j}= \begin{cases}1 & \text { if }\left\{v_{i}, v_{j}\right\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

For G d-regular, let its normalized adjacency matrix $M=A / d$.

Notice for undirected graphs A, M are symmetric by construction, and we have $A, M \in$ $\mathbb{R}^{n, n}$. It also follows directly that

Proposition 1.1. For a d-regular graph G with $n=|V|$, for all i, j, we have that

$$
\begin{aligned}
\sum_{k=1}^{n} A_{i k} & =\sum_{k=1}^{n} A_{k j}=d \\
\sum_{k=1}^{n} M_{i k} & =\sum_{k=1}^{n} M_{k j}=1
\end{aligned}
$$

Example 1.1. The following graph is 3 -regular:

and has adjacency matrix

$$
A=\left(\begin{array}{llllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

which we see is symmetric and satisfies $\sum_{k=1}^{8} A_{i k}=\sum_{k=1}^{8} A_{k j}=3$.
Definition 1.4. The cycle graph $C_{n}=(V, E)$ has $|V|=n, E=\left\{\left\{v_{i}, v_{i+1}\right\}: i=1, \ldots, n-\right.$ $1\} \cup\{\{1, n\}\}$.

Definition 1.5. The complete graph $K_{n}=(V, E)$ has $|V|=n, E=\{\{u, v\}: u, v \in$ $V, u \neq v\}$.

Definition 1.6 (Cuts and partitions). A partition $P=\left(X_{1}, \ldots, X_{n}\right)$ of sets X_{i} is a collection of disjoint subsets $X_{i} \subseteq X$ with $\cup_{i} X_{i}=X$. In other words, each element of X is in exactly one subset X_{i}. A cut $(S, V-S)$ of a graph $G=(V, E)$ is a partition of V into two subsets. Let the set of crossing edges $E(S, V-S) \subseteq E$ be the set of edges (u, v) with $u \in S, v \in V-S$. (note that we use - in this context to denote set difference) A nontrivial cut ($S, V-S$) is one where both subsets are non-empty.

2 Eigenvalues of graphs

Definition 2.1. For M a self-adjoint operator over an inner product space $\mathcal{V}=\mathbb{R}^{n}$, and a nonzero $x \in \mathcal{V}$, let Rayleigh's quotient be

$$
R(x)=\frac{\langle x, M x\rangle}{\|x\|^{2}}
$$

Theorem 2.1 (Courant-Fischer Theorem). Let M be a self-adjoint operator over an inner product space $\mathcal{V}=\mathbb{R}^{n}$ with eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$ repeated according to their multiplicities and corresponding eigenvectors e_{1}, \ldots, e_{n}. Then

$$
\lambda_{1}=\max _{x \neq 0} R(x)
$$

and in general

$$
\lambda_{k}=\max _{\substack{x \neq 0 \\ x \perp e_{1}, \ldots, x \perp e_{k-1}}} R(x)
$$

Proof. By the Real Spectral Theorem we know e_{1}, \ldots, e_{n} form a basis of $\mathcal{V}=\mathbb{R}^{n}$. For any nonzero $x \in \mathcal{V}$ (note $\|x\|^{2}=0$ iff $x=\mathbf{0}$), we can write

$$
\begin{aligned}
x & =\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i} \\
\langle x, M x\rangle & =\left\langle\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}, \sum_{i=1}^{n} \lambda_{i}\left\langle x, e_{i}\right\rangle e_{i}\right\rangle=\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle\left\langle e_{i}, \lambda_{i} e_{i}\right\rangle=\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle^{2} \lambda_{i} \\
\|x\|^{2} & =\left\langle\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}, \sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}\right\rangle=\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle^{2}
\end{aligned}
$$

Thus

$$
x=\frac{\langle x, M x\rangle}{\|x\|^{2}}=\frac{\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle^{2} \lambda_{i}}{\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle^{2}} \leq \frac{\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle^{2} \lambda_{1}}{\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle^{2}}=\lambda_{1}
$$

We also have

$$
\frac{\left\langle e_{1}, M e_{1}\right\rangle}{\left\|e_{1}\right\|^{2}}=\lambda_{1}
$$

so the sup is achieved and thus the max exists. To get the case for general k, we see that
$x \perp e_{1}, \ldots, x \perp e_{k-1}$ implies $\left\langle x, e_{i}\right\rangle=0$ for all $i<k$ so we can similarly write

$$
\begin{aligned}
x & =\sum_{i=k}^{n}\left\langle x, e_{i}\right\rangle e_{i} \\
\langle x, M x\rangle & =\sum_{i=k}^{n}\left\langle x, e_{i}\right\rangle^{2} \lambda_{i} \\
\|x\|^{2} & =\sum_{i=k}^{n}\left\langle x, e_{i}\right\rangle^{2} \\
x & =\frac{\langle x, M x\rangle}{\|x\|^{2}}=\frac{\sum_{i=k}^{n}\left\langle x, e_{i}\right\rangle^{2} \lambda_{i}}{\sum_{i=k}^{n}\left\langle x, e_{i}\right\rangle^{2}} \leq \frac{\sum_{i=k}^{n}\left\langle x, e_{i}\right\rangle^{2} \lambda_{k}}{\sum_{i=k}^{n}\left\langle x, e_{i}\right\rangle^{2}}=\lambda_{k}
\end{aligned}
$$

and we have

$$
\frac{\left\langle e_{k}, M e_{k}\right\rangle}{\left\|e_{k}\right\|^{2}}=\lambda_{k}
$$

so the sup is achieved and thus the max exists.
Proposition 2.1. Let $G=(V, E)$ be a d-regular graph and M be its normalized adjacency matrix. Let $n=|V|$, and let the eigenvalues of M be $\lambda_{1} \geq \ldots \geq \lambda_{n}$ repeated according to their multiplicities and corresponding eigenvectors be e_{1}, \ldots, e_{n}. Then $\lambda=1, e_{1}=1$.

Proof. Since M has rows that sum to 1 and all entries non-negative, we can fix a λ eigenvector $v=x_{1} f_{1}+\ldots+x_{n} f_{n}$ where f_{i} is the standard basis, and we see that $M v=\lambda v$ implies $m_{i 1} x_{1}+\ldots+m_{i n} x_{n}=\lambda x_{i}$ for all i, so we can take k such that $x_{k} \geq x_{i}$ for all i. $\left|x_{k}\right|>0$ follows from v nonzero so we can write

$$
\begin{aligned}
|\lambda| & =\frac{\left|x_{1} f_{1}+\ldots+x_{n} f_{n}\right|}{\left|x_{k}\right|} \\
& \leq a_{k 1}\left|\frac{x_{1}}{x_{k}}\right|+\ldots+a_{k n}\left|\frac{x_{n}}{x_{k}}\right| \\
& \leq a_{k 1}+\ldots+a_{n k} \\
& =1
\end{aligned}
$$

and it is easy to see that taking $v=f_{1}+\ldots+f_{n}=\mathbf{1}$ gives a 1-eigenvector of M, so for all other eigenvalues $\lambda^{\prime}, 1 \geq \lambda^{\prime}$ so $1=\lambda_{1}$.

This allows us to write the previous result in a more convenient form for use in proving Cheeger's inequality:

Proposition 2.2. Let $G=(V, E)$ be d-regular with normalized adjacency matrix M, $|V|=n$, eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$ repeated according to their multiplicities

$$
\lambda_{2}=\max _{\substack{x \neq \mathbf{0} \\ x \perp \mathbf{1}}} \frac{x^{T} M x}{x^{T} x}
$$

Proof. $M \in \mathbb{R}^{n, n}$ as an operator is self-adjoint by being symmetric and real (note orthonormality of the standard basis), so we can apply the Courant-Fischer Theorem with the inner product $\langle u, v\rangle=u^{T} v$ on $k=2$, and substitute $e_{1}=1$ from 2.1.

Example 2.1. The Courant-Fischer Theorem allows us to bound λ_{2} without any explicit computation of eigenvalues. Consider C_{n}, and take a vector with a high Rayleigh quotient $R(x)$, such as the one given by

$$
x_{i}= \begin{cases}i-n / 4 & \text { if } i \leq n / 2 \\ 3 n / 4-i & \text { if } i>n / 2\end{cases}
$$

which we can verify satisfies $\sum_{i} x_{i} \neq 0$ so $x \perp \mathbf{1}$, and $x \neq \mathbf{0}$. From this we can compute

$$
(M x)_{i}= \begin{cases}1-n / 4 & \text { if } i=1, n \\ n / 4-1 & \text { if } i=n / 2, n / 2+1 \\ x_{i} & \text { otherwise }\end{cases}
$$

since $(M x)_{i}=\frac{1}{2}\left(x_{i-1}+x_{i+1}\right)$ with x_{n} in place of $i-1$ when $i=1$ and x_{1} in place of $i+1$ when $i=n$. Then, denoting a polynomial expression of n with degree at most k by $P\left(n^{k}\right)$, it is easy to see that

$$
\begin{aligned}
x^{T} M x-x^{T} x= & \sum_{i=1, n}\left[(i-n / 4)^{2}-(i-n / 4)(1-n / 4)\right]+ \\
& \sum_{i=n / 2, n / 2+1}\left[(3 n / 4-i)^{2}-(3 n / 4-i)(n / 4-1)\right]=P(n) \\
x^{T} x= & \sum_{i=1}^{n / 2}(i-n / 4)^{2}+\sum_{i=n / 2+1}^{n}(3 n / 4-i)^{2}=P\left(n^{3}\right)
\end{aligned}
$$

so we get

$$
\begin{aligned}
R(x) & =\frac{x^{T} M x}{x^{T} x}=\frac{x^{T} x+P(n)}{x^{T} M x}=1+\frac{P(n)}{P\left(n^{3}\right)}=1+\frac{1}{P\left(n^{2}\right)} \\
\lambda_{2} & =\max _{\substack{x^{\prime} \neq 0 \\
x^{\prime} \perp 1}} R\left(x^{\prime}\right) \geq R(x)=1+\frac{1}{P\left(n^{2}\right)}
\end{aligned}
$$

giving the asymptotic bound $\lambda_{2} \geq 1+\frac{1}{P\left(n^{2}\right)}$. We will see why this is considered a high $R(x)$ and a strong bound once we prove the Cheeger inequality.

3 Easy direction of Cheeger's inequality

Definition 3.1 (Conductance and edge expansion). Given a d-regular graph $G=(V, E)$ and a nontrivial cut $(S, V-S)$, let the edge expansion $h(S)$ and conductance $\phi(S)$ of the
cut be

$$
\begin{aligned}
h(S) & =\frac{|E(S, V-S)|}{d \min (|S|,|V-S|)} \\
\phi(S) & =\frac{|E(S, V-S)|}{\frac{d}{|V|}|S||V-S|}
\end{aligned}
$$

and the conductance $\phi(G)$ and edge expansion $h(G)$ of G be

$$
\begin{aligned}
h(G) & =\min _{S} h(G) \\
\phi(G) & =\min _{S} \phi(G)
\end{aligned}
$$

with the min taken over all nontrivial cuts $(S, V-S)$ of G. Note in this context we will sometimes use just S to denote a cut $(S, V-S)$. The edge expansion h is also called the Cheeger constant or isoperimetric number, and the conductance ϕ is also called the sparsity.

We can quickly show a relation between these two quantities using their definitions.
Proposition 3.1. Given a graph G, we can write

$$
h(G) \leq \phi(G) \leq 2 h(G)
$$

Proof. Fix a nontrivial cut $(S, V-S)$ of G, and we see that $|S|,|V-S| \leq|V|$ and thus $\min (|S|,|V-S|) \geq \frac{|S||V-S|}{|V|}$. We also see that at least one of $|S|,|V-S| \leq|V| / 2$. WLOG let it be $|S|$, so $|V-S| /|V| \geq 1 / 2$ and thus $\frac{|S||V-S|}{|V|} \geq|S| / 2=\frac{1}{2} \min (|S|,|V-S|)$. (it is easy to see that an analogous line of reasoning leads to the same result for $|V-S| \leq|V| / 2)$. This gives us

$$
\begin{aligned}
\min (|S|,|V-S|) & \geq \frac{|S||V-S|}{|V|} \geq \frac{1}{2} \min (|S|,|V-S|) \\
\frac{|E(S, V-S)|}{d \min (|S|,|V-S|)} & \leq \frac{|E(S, V-S)|}{\frac{d}{|V|}|S||V-S|} \leq \frac{1}{2} \frac{|E(S, V-S)|}{d \min (|S|,|V-S|)} \\
h(S) & \leq \phi(S) \leq 2 h(S)
\end{aligned}
$$

Since for fixed $n=|V|$, the functions $\min (x, n-x)$ and $x(n-x)$ taken on $x \in(0, n)$ monotonically decrease together away from a shared maximum at $x=n / 2$, the same cut must minimize both $h(G)$ and $\phi(G)$. Letting that cut be S gives $h(G)=h(S), \phi(G)=$ $\phi(S)$ and thus $h(G) \leq \phi(G) \leq 2 h(G)$.

The Cheeger inequality gives us a relation between $h(G)$ and λ_{2}. We start by proving the easy direction, the lower bound for $h(G)$.

Proposition 3.2. For a d-regular graph $G=(V, E)$ with $n=|V|$ and eigenvalues $\lambda_{1} \geq$ $\ldots \geq \lambda_{n}$ repeated according to their multiplicities we have

$$
1-\lambda_{2} \leq \phi(G)
$$

Proof. We can compactly represent a subset, and thus a nontrivial cut S, by a bit vector $x \in\{0,1\}^{n}-\{\mathbf{0}, \mathbf{1}\}$ where $x_{i}=1$ if $v_{i} \in S$ and $x_{i}=0$ otherwise. Note that the removal of $\{\mathbf{0}, \mathbf{1}\}$ corresponds to nontriviality of cuts. Then $\left\{x_{i}, x_{j}\right\} \in E(S, V-S)$ iff $\left|x_{i}-x_{j}\right|=1$, so we can write

$$
\begin{aligned}
|E(S, V-S)| & =\sum_{\{i, j\} \in E}\left|x_{i}-x_{j}\right| \\
& =\frac{1}{2} \sum_{i, j} A_{i, j}\left|x_{i}-x_{j}\right| \\
& =\frac{d}{2} \sum_{i, j} M_{i, j}\left|x_{i}-x_{j}\right|
\end{aligned}
$$

where the constant $1 / 2$ comes from every edge $\{u, v\} \in E$ being counted twice in the sum. Since $|S||V-S|=E^{\prime}(S, V-S)$ for the complete graph K_{n} with adjacency matrix A^{\prime} with diagonal entries 0 and all other entries 1 , we get

$$
\begin{aligned}
|S||V-S| & =\frac{1}{2} \sum_{i, j} A_{i, j}^{\prime}\left|x_{i}-x_{j}\right| \\
& =\frac{1}{2} \sum_{i, j}\left|x_{i}-x_{j}\right|
\end{aligned}
$$

Note that these expressions involving $\left|x_{i}-x_{j}\right|$ are actually closely related to our earlier work with λ_{2} with inner products, since

$$
\begin{aligned}
\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2} & =\sum_{i, j} M_{i j}\left(x_{i}^{2}-2 x_{i} x_{j}+x_{j}^{2}\right) \\
& =\sum_{i} x_{i}^{2}\left(\sum_{j} M_{i j}+\sum_{j} M_{j i}\right)-2 \sum_{i, j} M_{i j} x_{i} x_{j} \\
& =2 x^{T} x-2 x^{T} M x
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i, j}\left(x_{i}-x_{j}\right)^{2} & =\sum_{i, j}\left(x_{i}^{2}-2 x_{i} x_{j}+x_{j}^{2}\right) \\
& =2 n \sum_{i} x_{i}^{2}-2 \sum_{i, j} x_{i} x_{j} \\
& =2 n x^{T} x-2\left(\sum_{i} x_{i}\right)^{2}
\end{aligned}
$$

Note that when $x \perp \mathbf{1}$, we have $x^{T} \mathbf{1}=\sum_{i} x_{i}=0$, and thus

$$
\begin{aligned}
\sum_{i, j}\left(x_{i}-x_{j}\right)^{2} & =2 n x^{T} x \\
\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2} & =2 x^{T} x
\end{aligned}
$$

In particular, with $x \neq 0$ and thus $x^{T} x \neq 0$ we can write

$$
\begin{aligned}
& 2 x^{T} M x=2 x^{T} x-\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2} \\
& \frac{x^{T} M x}{x^{T} x}=1-\frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{2 x^{T} x} \\
& \max _{\substack{x \neq 0 \\
x \perp \mathbf{1}}}^{x^{T} M x} x^{T} x=1-\min _{\substack{x \neq 0 \\
x \perp 1}}^{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}} \\
& 2 x^{T} x \\
& 1-\lambda_{2}=\min _{\substack{x \neq 0 \\
x \perp \mathbf{1}}}^{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}} \\
& 2 x^{T} x
\end{aligned} \min ^{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}
$$

From above we know $x \perp \mathbf{1}$ is equivalent to $\sum_{i} x_{i}=0$, and we see that this expression is invariant under scaling or shifting x by a constant, as $x^{\prime}=x+k 1$ satisfies $\left|x_{i}^{\prime}-x_{j}^{\prime}\right|=$ $\left|x_{i}-x_{j}\right|$ for all i, j, and any scalar multiple can be factored out in both the numerator and the denominator. Thus, we can take the min over all $x \neq k \mathbf{1}, k \in \mathbb{Z}$ (which gives $\left.\sum_{i, j}\left|x_{i}-x_{j}\right|=0\right)$ where for any x with $\sum_{i} x_{i} \neq 0$ we can instead evaluate the same expression over $x^{\prime}=x-\frac{1}{n} \sum_{i} x_{i}^{\prime}$ satisfying $\sum_{i} x_{i}^{\prime}=0$ and thus $x^{\prime} \perp \mathbf{1}$. Thus we can write

$$
1-\lambda_{2}=\min _{x \neq k \mathbf{1}, k \in \mathbb{Z}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
$$

and since $\mathbb{R}^{n}-\{k \mathbf{1}, k \in \mathbb{Z}\} \supseteq\{0,1\}^{n}-\{\mathbf{0}, \mathbf{1}\}$, we get

$$
\begin{aligned}
1-\lambda_{2} & \leq \min _{x \in\{0,1\}^{n}-\{0, \mathbf{1}\}} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}} \\
& =\min _{S} \frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}} \\
& =\min _{S} \frac{\frac{1}{2}|E(S, V-S)|}{\frac{d}{2 n}|S||V-S|} \\
& =\phi(G)
\end{aligned}
$$

where the min is taken over all nontrivial cuts $(S, V-S)$ of G.

This gives us

Proposition 3.3 (Easy direction of Cheeger's inequality). For a d-regular graph $G=$ (V, E) with eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$ repeated according to their multiplicities we have

$$
\frac{1-\lambda_{2}}{2} \leq h(G)
$$

Proof. By 3.2 and 3.1 we get $1-\lambda_{2} \leq \phi(G) \leq 2 h(G)$.

4 Difficult direction of Cheeger's inequality

To prove the other direction, we use the probabilistic method.
Proposition 4.1. Let $G=(V, E)$ be d-regular with normalized adjacency matrix M and eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$ repeated according to their multiplicities. Also let $n=|V|, x \in$ \mathbb{R}^{n} such that $x \neq \mathbf{0}, x \perp \mathbf{1}$. Then there exists a nontrivial cut $(S, V-S)$ of G satisfying

$$
h(S) \leq \sqrt{2 \delta}
$$

where

$$
\delta=\frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}}
$$

Proof. Fix some arbitrary labeling of vertices by v_{1}, \ldots, v_{n}. Intuitively, d-regularity gives us some freedom with the choice of cuts, and it turns out it suffices to consider the $n-1$ cuts of the form $(S, V-S)$ where $S=\left\{v_{1}, \ldots, v_{i}\right\}, i<n$. In particular, we will determine S by the value of a real, continuous random variable $t \in\left[x_{1}, x_{n}\right]$ with probability density function $f(t)=2|t|$. This gives

$$
\mathbb{P}[a \leq t \leq b]=\int_{a}^{b} 2|t| d t
$$

for $x_{1} \leq a \leq b \leq x_{n}$. We see that for $a, b \geq 0$

$$
\mathbb{P}[t \in[a, b]]=\int_{a}^{b} 2 t=b^{2}-a^{2}=\left|a^{2}-b^{2}\right|
$$

for $a, b \leq 0$

$$
\mathbb{P}[t \in[a, b]]=-\int_{a}^{b} 2 t=-\left(b^{2}-a^{2}\right)=\left|a^{2}-b^{2}\right|
$$

and for $a \leq 0, b \geq 0$

$$
\mathbb{P}[t \in[a, b]]=-\int_{a}^{0} 2 t+\int_{0}^{b} 2 t=a^{2}+b^{2}
$$

so we conclude

$$
\mathbb{P}[t \in[a, b]]= \begin{cases}\left|a^{2}-b^{2}\right| & \text { if } a, b \text { have the same sign } \\ a^{2}+b^{2} & \text { otherwise }\end{cases}
$$

and we let $S=\left\{v_{i}: x_{i} \leq t\right\}$.

We can also make a few simplifying assumptions. Since we only look at sums and products of x_{i} for all i, WLOG reorder M and x such that $x_{1} \leq \ldots \leq x_{n}$. Furthermore, in the proof for 3.2 we showed that δ is invariant under scaling or shifting x, so WLOG we can shift (i.e. by adding $-x_{\lfloor n / 2\rfloor}$) so that the entry $x_{\lfloor n / 2\rfloor}=0$ and then scale (i.e. noting that $x \neq \mathbf{0}$ gives at least one of $x_{1}, x_{n} \neq 0$ so $x_{1}^{2}+x_{n}^{2} \neq 0$, by multiplying by $\left.\frac{1}{\sqrt{x_{1}^{2}+x_{n}^{2}}}\right)$ so that $x_{1}^{2}+x_{n}^{2}=1$.

Then we can apply linearity of expectation, although we have to be careful to not overcount in the case where $|S|=|V-S|$. Here, we choose to only count the contribution by members of $|S|$ in that case, so let X_{i} be the event that v_{i} in the strictly smaller subset or $|S|=$ $|V-S|, v_{i} \in S$. Thus

$$
\mathbb{E}[\min (|S|, \mid V-S)]=\sum_{i} \mathbb{E}\left[1_{X_{i}}\right]=\sum_{i} \mathbb{P}\left[X_{i}\right]
$$

When n is odd, the special case $|S|=|V-S|$ is impossible. Note that for $i<n / 2, v_{i} \in$ $V-S$ implies $|V-S|>n / 2$ and thus $V-S$ is the larger subset, so X_{i} is equivalent to $v_{i} \in S$ with $|S|<n / 2$, which is equivalent to $t \in\left[x_{i}, 0\right)$. It is easy to see that the analogous statement holds, that for $i>n / 2, X_{i}$ is equivalent to $t \in\left(0, x_{i}\right]$. We see

$$
\mathbb{P}\left[t \in\left[x_{i}, 0\right)\right]=\mathbb{P}\left[t \in\left(0, x_{i}\right]\right]=\mathbb{P}\left[t \in\left[0, x_{i}\right]\right]=x_{i}^{2}
$$

since the distribution is continuous, so

$$
\mathbb{E}[\min (|S|, \mid V-S)]=\sum_{i} x_{i}^{2}
$$

When n is even, for $i \leq n / 2, X_{i}$ occurs when either $|V-S|>n / 2$ and $v_{i} \in S$ from above, or $|S|=|V-S|=n / 2$ and $v_{i} \in S$. Thus, X_{i} is equivalent to $v_{i} \in S$ with $|S| \leq n / 2$, which is equivalent to $t \in\left[x_{i}, x_{n / 2+1}\right)$. It is easy to see that the analogous statement holds, that for $i>n / 2, X_{i}$ is equivalent to $t \in\left(x_{n / 2+1}, x_{i}\right]$. We see

$$
\begin{aligned}
\mathbb{E}[\min (|S|, \mid V-S)] & =\sum_{i=1}^{n / 2} \mathbb{P}\left[t \in\left[x_{i}, x_{n / 2+1}\right)\right]+\sum_{i=n / 2+1}^{n} \mathbb{P}\left[t \in\left(x_{n / 2+1}, x_{i}\right]\right] \\
& =\sum_{i=1}^{n / 2} x_{i}^{2}+x_{n / 2+1}^{2}+\sum_{i=n / 2+1}^{n} x_{i}^{2}-x_{n / 2+1}^{2} \\
& =\sum_{i} x_{i}^{2}
\end{aligned}
$$

Next we see the why this distribution is especially useful, as it allows for an intuitive view of crossing edges: an edge is a crossing edge if t falls between the components of x that correspond to the vertices. In other words, $\left\{v_{i}, v_{j}\right\} \in E(S, V-S)$ with WLOG $i<j$ iff $t \in\left[x_{i}, x_{j}\right]$. This probability is either $\left|x_{i}^{2}-x_{j}^{2}\right|$ or $x_{i}^{2}+x_{j}^{2}$, which we can bound by

$$
\mathbb{P}\left[\left\{v_{i}, v_{j}\right\} \in E(S, V-S)\right] \leq\left|x_{i}-x_{j}\right|\left(\left|x_{i}\right|+\left|x_{j}\right|\right)
$$

since

$$
\begin{aligned}
\left|x_{i}^{2}-x_{j}^{2}\right| & =\left|x_{i}-x_{j}\right|\left|x_{i}+x_{j}\right| \leq\left|x_{i}-x_{j}\right|\left(\left|x_{i}\right|+\left|x_{j}\right|\right) \\
x_{i}^{2}+x_{j}^{2} & \leq\left(\left|x_{i}\right|+\left|x_{j}\right|\right)\left|x_{i}\right|+\left(\left|x_{i}\right|+\left|x_{j}\right|\right)\left|x_{j}\right|=\left|x_{i}-x_{j}\right|\left(\left|x_{i}\right|+\left|x_{j}\right|\right)
\end{aligned}
$$

where the first line follows from the Triangle Inequality and the second from x_{i}, x_{j} having different signs, which yields $\left|x_{i}-x_{j}\right|=\left|x_{i}\right|+\left|x_{j}\right| \geq\left|x_{i}\right|,\left|x_{j}\right|$.

We can substitute this into a larger expression for expectation using linearity of expectation and indicator variables to get

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{d} E(S, V-S)\right] & =\frac{1}{d} \mathbb{E}\left[\frac{1}{2} \sum_{i, j} A_{i j} \mathbf{1}_{\left\{v_{i}, v_{j}\right\} \in E(S, V-S)}\right] \\
& =\frac{1}{2} \sum_{i, j} M_{i j} \mathbb{E}\left[\mathbf{1}_{\left\{v_{i}, v_{j}\right\} \in E(S, V-S)}\right] \\
& =\frac{1}{2} \sum_{i, j} M_{i j} \mathbb{P}\left[\left\{v_{i}, v_{j}\right\} \in E(S, V-S)\right] \\
& \leq \frac{1}{2} \sum_{i, j} M_{i j}\left|x_{i}-x_{j}\right|\left(\left|x_{i}\right|+\left|x_{j}\right|\right) \\
& \leq \frac{1}{2} \sqrt{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}} \sqrt{\sum_{i, j} M_{i j}\left(\left|x_{i}\right|+\left|x_{j}\right|\right)^{2}}
\end{aligned}
$$

where at the last step we apply Cauchy-Schwarz using the Euclidean dot product on $a=\sum_{i, j} \sqrt{M_{i j}}\left(x_{i}-x_{j}\right), b=\sum_{i, j} \sqrt{M_{i j}}\left(\left|x_{i}\right|+\left|x_{j}\right|\right)$, getting $|\langle a, b\rangle| \leq\|a|\||b||$.

Recall from our proof of 3.2 that when $x \perp \mathbf{1}, x \neq \mathbf{0}$, we have $\sum_{i, j}\left(x_{i}-x_{j}\right)^{2}=2 n \sum_{i} x_{i}^{2}$. Rewriting our definition of δ, we get

$$
\begin{aligned}
\delta & =\frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}} \\
\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2} & =\delta \frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2} \\
& =2 \delta \sum_{i} x_{i}^{2}
\end{aligned}
$$

Also note $2 x_{i}^{2}+2 x_{j}^{2}-\left(\left|x_{i}\right|+\left|x_{j}\right|\right)^{2}=\left(\left|x_{i}\right|-\left|x_{j}\right|\right)^{2} \geq 0$ implies $2 x_{i}^{2}+2 x_{j}^{2} \geq\left(\left|x_{i}\right|+\left|x_{j}\right|\right)^{2}$,
so we get

$$
\begin{aligned}
\sum_{i, j} M_{i j}\left[\left|x_{i}\right|+\left|x_{j}\right|\right]^{2} & \leq \sum_{i, j} M_{i j}\left(2 x_{i}^{2}+2 x_{j}^{2}\right) \\
& =2 \sum_{i}\left(\sum_{j} M_{i j} x_{j}^{2}+\sum_{j} M_{j i} x_{j}^{2}\right) \\
& =4 \sum_{i} x_{i}^{2}
\end{aligned}
$$

by properties of M. We thus find that

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{d} E(S, V-S)\right] & \leq \frac{1}{2} \sqrt{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}} \sqrt{\sum_{i, j} M_{i j}\left[\left|x_{i}\right|+\left|x_{j}\right|\right]^{2}} \\
& \leq \frac{1}{2} \sqrt{2 \delta \sum_{i} x_{i}^{2}} \sqrt{4 \sum_{i} x_{i}^{2}} \\
& =\sqrt{2 \delta} \sum_{i} x_{i}^{2}
\end{aligned}
$$

Combining this with our previous result for $\mathbb{E}[\min (|S|, \mid V-S)]$, we get

$$
\begin{array}{r}
\frac{\mathbb{E}\left[\frac{1}{d} E(S, V-S)\right]}{\mathbb{E}[\min (|S|, \mid V-S)]} \leq \frac{\sqrt{2 \delta} \sum_{i} x_{i}^{2}}{\sum_{i} x_{i}^{2}}=\sqrt{2 \delta} \\
\mathbb{E}\left[\frac{1}{d} E(S, V-S)-\sqrt{2 \delta} \min (|S|, \mid V-S)\right] \leq 0
\end{array}
$$

from linearity of expectation. Thus there must exist a nontrivial cut $(S, V-S)$ satisfying

$$
\begin{array}{r}
\frac{1}{d} E(S, V-S)-\sqrt{2 \delta} \min (|S|, \mid V-S) \leq 0 \\
h(S) \leq \frac{E(S, V-S)}{d \min (|S|, \mid V-S)} \leq \sqrt{2 \delta}
\end{array}
$$

Theorem 4.1 (Cheeger's inequality). For a d-regular graph $G=(V, E)$ with eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$ repeated according to their multiplicities we have

$$
\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}
$$

Proof. The left-hand inequality comes from 3.3. To get the right-hand inequality, we can apply 4.1 to an eigenvector $x=e_{2}$ of λ_{2}, which satisfies $x \perp \mathbf{1}, x \neq \mathbf{0}$. This yields
$h(G) \leq h(S) \leq \sqrt{2 \delta}$ and in particular for $x=e_{2}$ we have

$$
\begin{aligned}
\delta & =\frac{\sum_{i, j} M_{i j}\left(x_{i}-x_{j}\right)^{2}}{\frac{1}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}} \\
& =\frac{2 x^{T} x-2 x^{T} M x}{2 x^{T} x} \\
& =\frac{2 x^{T} x\left(1-\lambda_{2}\right)}{2 x^{T} x} \\
& =1-\lambda_{2}
\end{aligned}
$$

where the second step comes from equivalent expressions for the numerator and denominator expressions derived in the proof of 3.2. This gives the desired

$$
h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}
$$

Example 4.1. Cheeger's inequality allows us to approximate $h(G)$ for arbitrary G. Take the complete graph K_{4} with

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

and from the respective normalized adjacency matrix $M=A / 4$ we can compute the eigenvalue $\lambda_{1}=1$ with eigenvectors ($1,1,1,1$) and the eigenvalue $\lambda_{2}=\lambda_{3}=\lambda_{4}=-1 / 4$ with eigenvectors $(-1,0,0,1),(-1,0,1,0),(-1,1,0,0) . K_{4}$ is 3 -regular, so substituting for λ_{2}, Cheeger's inequality gives us the approximation $1 \leq h(G) \leq 2$.

Example 4.2 (Tightness of Cheeger's inequality). Recall that from our application of the Courant-Fischer Theorem in 2.1 we know

$$
\lambda_{2} \geq 1+\frac{1}{P\left(n^{2}\right)}
$$

Any non-trivial cut $(S, V-S)$ has $E(S, V-S)=2$, so the cut that minimizes $h(S)$ will maximize $\min (|S|,|V-S|)$ and thus have $|S|=\lfloor n / 2\rfloor$. This gives $h(G)=\frac{2}{2\lfloor n / 2\rfloor} \geq 2 / n$. Note C_{n} is 2-regular, so Cheeger's inequality gives $\sqrt{2\left(1-\lambda_{2}\right)} \geq h(G) \geq 2 / n$ and thus $\lambda_{2} \leq 1-2 / n^{2}=1+\frac{1}{P\left(n^{2}\right)}$. Thus, the upper bound of Cheeger's inequality is asymptotically tight, and this tightness is achieved in cycles.

Example 4.3 (Sparsest cut problem). Given a graph $G=(V, E)$, the problem of determining the cut ($S, V-S$) that achieves the minimum $h(S)=h(G)$ has been shown to be NP-hard, meaning there is no known polynomial-time algorithm that solves it. ([2] presents a proof) Note the name of the problem actually alludes to the sparsity ϕ, since h, ϕ are sometimes used interchangeably as we have seen that they are related quantities minimized by the same cuts. However, the proof of the Cheeger inequality from 4.1 suggests a polynomial-time algorithm for finding a relatively small cut, where we guarantee $h \leq \sqrt{2\left(1-\lambda_{2}\right)}$:

1. Compute λ_{2} and a corresponding eigenvector x
2. Label the vertices such that $x_{1} \geq \ldots \geq x_{n}$
3. Try all cuts of the form $(S, V-S)=\left(\left\{v_{1}, \ldots, v_{i}\right\},\left\{v_{i+1}, \ldots, v_{n}\right\}\right)$ and return the one with smallest $h(S)$
which takes advantage of known polynomial-time algorithms for computing eigenvalues and eigenvectors of real symmetric matrices, which is the runtime-limiting step.

For instance, applying this algorithm to the graph from 1.1, we get $\lambda_{2}=\sqrt{5} / 3$ and

with the vertex labels representing the entries of x and the best cut represented by the dotted line (the computation is by [3). We can verify that this cut has $h(S)=\frac{2}{3(4)}=\frac{1}{6}$ and that this satisfies $0.127 \approx \frac{1-\sqrt{5} / 3}{2} \leq \frac{1}{6} \leq \sqrt{2(1-\sqrt{5} / 3)} \approx 0.714$.

References

[1] Jiaqi Jiang. An introduction to spectral graph theory. http://math.uchicago.edu/ ~may/REU2012/REUPapers/JiangJ.pdf, May 2012.
[2] David W. Matula and Farhad Shahrokhi. Sparsest cuts and bottlenecks in graphs. Discrete Applied Mathematics, 27(1):113-123, 1990.
[3] Thomas Sauerwald and He Sun. Lecture 4 from spectral graph theory. https://resources.mpi-inf.mpg.de/departments/d1/teaching/ws11/SGT/ Lecture4.pdf, Winter 2011.
[4] Luca Trevisan. Lectures 1-4 from cs359g: Graph partitioning and expanders. http: //theory.stanford.edu/~trevisan/cs359g/\#notes, January 2011.
[5] Anupam Gupta (Scribe) Umesh Vazirani, Satish Rao (Lecturers). Lecture 9 from cs270: Combinatorial algorithms and data structures. https://people.eecs. berkeley.edu/~satishr/cs270/sp11/rough-notes/Sparse-cuts-spectra.pdf, Spring 2017.

