
RePEAtO: Relational Paragraph-level Embeddings for Article Outlining

Michael Tang1 Evan Dogariu1 Jiatong Yu1

1Department of Computer Science, Princeton University
{mwtang, edogariu, jiatongy}@princeton.edu

Abstract

We formulate a novel task: article outlining, the recon-
struction of the hierarchical structure of headings and sub-
headings within an article from just a list of paragraphs.
We propose and analyze the adJacent Paragraph Least-
common-ancestor-distance (JPL) score evaluation metric,
compose a full-stack web application to collect human per-
formance data on the article outlining task, and then ex-
plore various models under a composable encoder-decoder
general architecture. We find that out of various embedding
techniques based on past work on word, sentence, and doc-
ument embeddings, SimCSE [2] performs the best and re-
sults in our strongest model using a recursive MLP decoder
and paragraph embeddings composed of averaged SimCSE
sentence embeddings. We find evidence that recursive mod-
els best capture the hierarchical information needed for this
task, and perform ablations and further analysis of the rel-
evant paragraph embedding spaces. Nevertheless, we find
that humans far outperform our best models, and thus lay
the groundwork for further study in this task, and by exten-
sion, in hierarchical tasks that require embeddings of longer
forms of text.

1 Introduction

Past work in NLP representation learning has focused
heavily on word-level, and more recently, sentence-
level embeddings. Paragraphs encode the flow of in-
formation across individual sentences when illustrat-
ing more complex ideas – thus, we are interested in
exploring ways of encoding at the paragraph level.

We propose the task of article outlining, predicting the
nested outline of an article given only the raw para-
graph sequence. We will focus on learning the struc-
ture rather than the names of the headings.

Possible applications include generating outlines of
freeform notes or reconstructing the written structure

of articles/transcriptions when communicated ver-
bally. We hope paragraph-level understanding will
also help future models interact with text in more
human-like ways, such as retriever systems that can
efficiently search through articles using just the sub-
headings.

2 Related Work

An important related topic is the framework of
encoder-decoder models. Encoders embed para-
graphs into vectors in a meaningful embedding space,
which should provide useful information regarding
paragraph relationships for the decoder. The embed-
ding approaches we use are based on several differ-
ent popular natural language embedding techniques,
which we discuss below.

2.1 FastText

FastText is an open source library built upon Bo-
janowski et al.’s word embedding model[1]. The
main advantage of FastText is its tolerance of out-of-
vocabulary tokens. FastText takes into account mor-
phological structures by summing over n-grams of
different size. Thus it can infer unseen words from
known subwords. This behavior is particularly desir-
able, since the out-of-vocabulary tokens can be named
entities, technical words, and other things that are use-
ful for understanding paragraph relations.

In order to generate a paragraph embedding in a
fixed-dimensional latent space from a variable length
sequence of words, we apply a LSTM projection layer.
We discuss the implementation of this further in 3.4.

2.2 SimCSE

SimCSE is a contrastive learning-based model for
state-of-the-art sentence-level embedding[2]. Sim-
CSE applies a contrastive objective that pulls together
positive-pair sentence vectors and pushes apart others
to fine-tune a pretrained BERT model :

li = − log
esim(hi,h

+
i)∑

j e
sim(hi,h

+
j)

In unsupervised training, positive pairs are gener-
ated from identical sentences inferenced with differ-
ent dropout masks, while negative pairs are other sen-
tences in each batch. The supervised SimCSE was
trained on an NLI dataset, from which implications
generate positive pairs and contradictions make hard
negative pairs. We build off of the pre-trained super-
vised SimCSE model that fine-tuned BERT. Similarly
to the FastText embeddings, we project sentence-level
embeddings to paragraph-level embeddings (see 3.4).

2.3 Doc2Vec

Doc2Vec[4] embeds variable-length paragraphs into
fixed-length vectors. Doc2Vec generates both para-
graph and word vectors during training, but uses only
the paragraph vector in order to embed paragraphs.
During training, Doc2Vec concatenate paragraph vec-
tors with sampled word vectors within the paragraph,
and use the resulting matrix to predict next words.
Here word vectors are fixed and stored in a vocabu-
lary.

Doc2Vec is directly trained on paragraphs and pro-
duces fixed-length paragraph embeddings, which al-
low us to experiment with both the performance of
embeddings at different scales and to reason about
the performance of projection layers such as the LSTM
mentioned above.

3 Methods

3.1 Task formalization

We formulate the problem as the prediction of the
heading tree — the nested n-ary tree of headings —
from a list of raw paragraphs in an article. For train-
ing, we can formulate the output as an outline vector
or segmentation vector. The former encodes the indices

of all of the nested headings that each paragraph falls
under, while the latter succinctly encodes whether a
paragraph begins or ends a section at each depth (see
Figure 1). Note that both of these representations pro-
vide sufficient information to reconstruct the heading
tree in full.

3.2 Task evaluation

We attempt to devise a metric for this novel task. The
goal is to evaluate different predicted heading trees
against a given ground truth heading tree. We specifi-
cally want the following properties:

• Fairly compares proposed heading trees with dif-
ferent numbers of headings and different tree
depths (i.e. does not discard or underweight any
nodes in a tree with more or deeper headings)

• Normalizes between articles with different num-
bers of paragraphs

• Independent from the heading tree representa-
tion (i.e. only engages with implicit properties
of the tree structure, so it does not unfairly fa-
vor training objectives that use certain represen-
tations)

We compare four different metrics, described below.
All-Pairs Paragraph LCA (APPL) score

APPL(y, ŷ, n) =
1(
n
2

) ∑
i̸=j∈[n]

(LCAŷ
ij − LCAy

ij)
2

where n is the number of paragraphs in the article,
y, ŷ are the ground truth and predicted heading trees,
respectively, and

LCAt
ij = argmink[d

t(i, k)) + dt(j, k)]

is the least common ancestor distance between para-
graphs i, j in tree t with distance function dt. This met-
ric more highly weights the proper prediction of rela-
tionships between paragraphs that are further away
from each other, e.g. in long sections with many para-
graphs at the same depth, since it is a global metric
over the entire article.

Adjacent Paragraph LCA (JPL) score

JPL(y, ŷ, n) =
1

n− 1

∑
i̸=j∈[n]

(LCAŷ
ij − LCAy

ij)
2

with n, y, ŷ,LCA defined the same way as in the pre-
vious section. This metric is motivated by a sample
human strategy, which is to predict heading relation-
ships by comparing neighboring paragraphs.

2

Figure 1: Article tree and respective outline vector and segmentation vector representations. For example, the
third outline vector [1, 2, 2] specifies that the third paragraph is the second depth-3 subheading under the second
depth-2 subheading under the first depth-1 heading, and the third segmentation vector [0, 0, 0, 0, 1, 1] specifies
that the third paragraph does not start a section at any depth but ends a section at depths 2 and 3.

Elastic Paragraph LCA (EPL) score

EPLα(y, ŷ, n) = αAPPL(y, ŷ, n) + (1− α)JPL(y, ŷ, n)

with n, y, ŷ,LCA defined the same way as in the pre-
vious sections. This metric is motivated by Elastic Net
loss, here interpolating between APPL and JPL met-
rics.

Edit score This is the edit distance between the
bracket-symbol representations of two heading trees,
where we compose string using some dummy symbol
“x” to denote each paragraph and brackets to denote
the sections. (e.g. [x[[xx]x][xxx]]) This metric is moti-
vated by the way we concisely represent the heading
trees when printing verbose output or in the human
evaluation game (see 3.4).

Note that these metrics may be generalized to other
n-ary tree structural learning problems.

3.3 Dataset

Our text data source is the Wikitext [3] dataset main-
tained by Huggingface, containing approximately
30,000 Wikipedia articles. We preprocess this into an
article-outlining dataset, where each example consists

of a flattened list of paragraphs and each label consists
of the heading tree with paragraphs as the leaves. We
exclude headings with no paragraph content, such as
ones containing only tables.

3.4 Model architectures

We approach this problem with an encoder-decoder
framework, where we use the embedding techniques
discussed in 2 (e.g. Doc2Vec, SimCSE, FastText) to en-
code paragraphs into vectors in a useful latent space.
We propose 3 different decoder architectures and tech-
niques, all of which predict a heading tree from a se-
quence of embedded paragraphs.

Greedy decoder. Given fixed-length paragraph em-
beddings, we compute pairwise similarities and re-
cursively group together pairs with similarity above a
tuned threshold. We then build the tree with a bottom
up dynamic programming approach based on these
similarity groupings.

The full algorithm is as follows: The parameters are
the input paragraphs (X1, ..., Xn), the max possible
depth over articles in the dataset D, the hyperpa-
rameter thresholds for each depth α1, ..., αD, func-
tions Embed() and Similarity(), and a tree represen-

3

Algorithm 1 Greedy decoding

Require: (X1, ..., Xn), D, (α1, ..., αD), Embed(), Simi-
larity(), Combine(), Node(text=”, children=())
T ← (Node(text = X1), ...,Node(text = Xn))
E ← (Embed(X1), ...,Node(Xn))
for d ∈ D, ..., 0 do

I ← ((1))
for i ∈ 2, ..., |E| do

if Similarity(Ei−1, Ei) ≥ αi then
Add i to last section in I

else
Add a new section (i) to the end of I

end if
end for
T ← (Node(chd = TI1), ...,Node(chd = TI|I|))
E ← (Combine(I1), ...,Combine(I|I|))
D ← D − 1

end for
return Node(chd=T)

tation Node(). During the algorithm, I represents the
current groups of indices representing the sections at
depth d of the proposed heading tree, and E gives the
embedding for each section.

For the embedding function Embed(), we applied
4 different variations of commonly used embedding
frameworks:

• LSTM-projected FastText word embeddings
• Averaged SimCSE sentence embeddings
• LSTM-projected SimCSE sentence embeddings
• 256-dimensional Doc2Vec paragraph embed-

dings

The two projection LSTMs are trained jointly with the
Recursive MLP model detailed below. In particular,
we use the training objective of the MLP to train both
the MLP and 1-layer projection LSTMs for FastText
word embeddings and SimCSE sentence embeddings.

For the embedding combination function Combine(),
we simply take the element-wise vector mean of
all the embeddings in the section to serve as the
section embedding, and for the similarity function
Similarity() we use cosine similarity.

During evaluation, we used a conservative max depth
value of D = 8, which was higher than all articles in
the dataset, and individually tuned the threshold hy-
perparameters αi using random search.

Recursive MLP. Given fixed-length paragraph em-
beddings, we use a context window to encode in-
formation about a target paragraph. We pass this

into a multilayer perceptrion (MLP) feed-forward net-
work to predict whether the center of the window
marks the beginning of a section at a given depth (the
depth is passed as input to each layer of the MLP).
In particular, given paragraph embeddings of dimen-
sion d and a context window size of w neighbors in
each direction, we train an MLP that takes as input
a (d · (2w + 1) + 1)-dimensional vector and outputs
the probability that the target paragraph in this con-
text window is the first paragraph of a heading at the
given depth.

Note that this information, analogously to the seg-
mentation vectors, suffices to rebuild the heading tree
in full. Accordingly, we infer recursively using this
MLP to build the heading tree from the top down by
allowing the model to predict the section divisions at
each depth. To execute this procedure efficiently, we
divide it into three steps:

1. The dataset is first transformed into a set of
(contextwindow, depth, boolean) triplets. For
each paragraph in an article, we recursively
search for which headings that paragraph begins.
For the depths that a target paragraph starts a
heading at, we form a context window with the
target in the center and assign a positive label. All
other context windows and depths are assigned
negative labels. During training, we compare the
model predictions to labels with a binary cross-
entropy loss.

2. We generate a root node at depth 0 for the tree.
For each target paragraph in the sequence, we use
the MLP to predict whether that paragraph starts
a heading at depth 1 via a threshold probabil-
ity. For each subsequence of paragraphs between
breaks, we create a heading node in the tree with
depth 1 and recur.

3. In general, for any given subsequence of the ar-
ticle and parent node, we use the MLP to deter-
mine where we need to insert new subheading
nodes; for each new insertion, we recur. Other-
wise, we create leaf nodes to represent the para-
graphs, and we are done.

We tried two different MLP architectures: a small
one with layer dimensions of [(d · (2w + 1) +
1), 1024, 256, 64, 1] and a window size of w = 2, and
a large one with layer dimensions of [(d · (2w + 1) +
1), 5096, 1024, 256, 64, 1] and a window size of w = 4.
The smaller models had a paragraph embedding di-
mension of d = 256 and the larger models had dimen-

4

sions of d = 512, with the exception of the Doc2Vec-
based models which always use d = 256.

For the FastText and SimCSE-based MLP models,
we required a bidirectional LSTM projection layer to
project the sequences of word or sentence embed-
dings to paragraph embeddings. These projections
were trained jointly with the feed-forward parts of
the model, and were used for the greedy decoder and
end-to-end model, which we discuss below.

End-to-end transformer. Given fixed-length para-
graph embeddings, we apply a transformer decoder
and then a linear projection to a vector output, either
as outline or segmentation vectors. The heading tree
is then reconstructed algorithmically from the vector
output.

Our transformer decoder had 3 layers, with a hid-
den dimension of 128 and a feed-forward dimension
of 1024. We used 4 attention heads. We trained this
model using Doc2Vec embeddings and projected Sim-
CSE embeddings.

3.5 Human annotations

To ground our model results and formulate a human
benchmark for the task, we measured human perfor-
mance by building an interactive web application to
create an interface for participants to solve the article
outlining task. This app can also serve as a hub to gen-
erate interest in and crowdsource data for this task,
as well as possibly publicize up-to-date model perfor-
mance. The app is live at https://outline-turk.
herokuapp.com/.

App overview. The app uses a concise nested-bracket
representation of the heading tree for user submis-
sions. It continually generates a preview of the cur-
rently proposed outline for the user to see, which up-
dates whenever the outline or article number fields are
edited. The outline field is also pre-filled for each new
article with an initial degenerate outline in the form
[1, 2, ..., n], which makes it easier for the user to make
their desired changes by simply inserting brackets as
well as providing the total number of paragraphs for
the given article.

The app also performs real-time evaluation of user
submissions, and provides a live results page that
computes and shows each user’s mean JPL score over
their submissions. Each user JPL score is paired with
a model JPL score using cached results from one of
our better-performing models, Greedy-Doc2Vec-128,
averaged over the same articles as the user’s submis-

sions. This is to provide an estimate of model perfor-
mance over the articles the user tackled, normalized to
the difficulty of those articles, since article difficulty is
relatively high variance especially if a user only com-
pletes a few articles. The competitive aspect of bench-
marking each user against the model’s respective per-
formance, as well as the format of the results table as
a sorted leaderboard, serve to incentivize user partici-
pation by gamifying the outlining task (it is also to this
end that the app was given a secondary title “Outline-
dle,” playing off the popular Wordle line of Internet
minigames).

App technical details. The front-end is built on Boot-
strap with JQuery for interactive elements, and the
back-end runs on Flask with Jinja2 templating and
reads and writes data to/from a Firebase database.
We use AJAX to generate the dynamic preview, and
deployed the app for user submissions via Heroku,
which provides in-built concurrency.

4 Results

We begin by discussing overall performance on the
testing splits of the Wikitext data in sections 4.1-4.3.
After, we delve deeper into possible differences in
model performance on different types of articles in 5.1,
as well as a deeper analysis of the embedding spaces
generated by different techniques in 5.2. We finish
with an ablation of our chosen evaluation metric in
5.3.

4.1 Greedy decoder

We observe that the greedy decoder, which does
not contain any trainable parameters (aside from the
LSTM projection layers) performs quite well. The
bottom-up dynamic programming nature of the algo-
rithm is suited quite well to the hierarchical structure
of the output. The way in which the greedy algorithm
groups nearby paragraphs into headings by similar-
ity at each level feels quite natural and comparable to
how a human being might approach the problem.

Interestingly, the encoding type that performs best
with the greedy decoder uses averaged SimCSE sen-
tence embeddings, as opposed to the projected Sim-
CSE embeddings like one might expect. We discuss
this and our general results on the nature of the em-
bedding spaces further in 5.2.

One important detail to note is that the greedy de-
coder is quite fast: the majority of inference time on an

5

https://outline-turk.herokuapp.com/
https://outline-turk.herokuapp.com/

Figure 2: Outline-dle web app main interface https://outline-turk.herokuapp.com/

Figure 3: Outline-dle web app results interface https://outline-turk.herokuapp.com/results

6

https://outline-turk.herokuapp.com/
https://outline-turk.herokuapp.com/results

Model JPL Score

Greedy-Doc2Vec 1.316
Greedy-Projected FastText 1.431
Greedy-Averaged SimCSE 1.273
Greedy-Projected SimCSE 1.319

MLP-Doc2Vec 1.256
MLP-FastText 1.302
MLP-SimCSE 1.221

End-to-End-Doc2Vec 4.732
End-to-End-SimCSE 4.732

Human 0.469

Figure 4: Results from all model architectures

article is spent on embedding the paragraphs, which
the greedy decoder only does once.

4.2 Recursive MLP

The recursive MLP decoder performs the best. We ex-
pect that this is because the recursive decoding pro-
cess lends itself nicely to the hierarchical structure of
the output. At the same time, however, the problem of
classifying paragraphs by whether they start a head-
ing at a particular depth is a very tractable problem
for a lightweight MLP to handle, especially when it is
given the context of nearby paragraphs. We did not
observe any major difference in the recursive MLP de-
coder’s performance between the two sizes with any
of the 3 encoder setups; so the results shown in the
table are those gathered with the smaller models.

We observe that the encoding type that performs best
with the recursive MLP decoder uses the projected
SimCSE sentence embeddings. This makes sense,
because SimCSE has been shown to produce state-
of-the-art, semantically meaningful sentence embed-
dings. Via the LSTM projection layer, we allow
the MLP to make more flexible use of the informa-
tion within each paragraph than the rigid nature of
Doc2Vec, for example. We discuss our results on the
nature of our embedding spaces further in 5.2.

An important element that we observed is that the
recursive MLP decoder takes much longer than the
greedy decoder to evaluate: specifically, it takes about
1 second per article to generate a tree. This is because
at each depth in the recursion, the MLP model must
be again inferenced at the same context windows, but
with a different depth as input.

4.3 End-to-end transformer

The end-to-end models perform the worst. They pro-
duce degenerate output, in which they predict the
same segmentation sequence for any input. After in-
vestigating, we found that the degenerate output cor-
relates strongly with the mean of the segmentation
vectors over the training set. This behavior persists
throughout various changes in architecture, hyperpa-
rameters, overfitting conditions, etc. We attempted to
correct for this via normalization by mean and stan-
dard deviation, but it continues to predict a constant
output that is correspondingly normalized. In the
end, we observed that the other methods of decoding
a sequence of paragraph embeddings to form a head-
ing tree are more naturally suited to the hierarchical
structure of the output. The sequence-to-sequence na-
ture of the transformer required us to represent trees
as sequential output; while the outline and segmenta-
tion vectors appear reasonable representations at the
surface, it seems that it is difficult for a transformer
to make meaningful progress. Perhaps more research
can be done into how to encode a tree into a sequential
representation that is more learnable.

5 Discussion

5.1 Performance over Different Article Lengths
and Depths

We hypothesized that the number of paragraphs and
the level of nested headings would impact model per-
formances, as observed in human annotation scores.
Below are our visualizations of SimCSE JPL scores
over the testing set distributions.

7

0 25 50 75 100 125 150 175
0

2

4

6

8

model performance over article length
SimCSE MLP
SimCSE Greedy

Figure 5: SimCSE models performance over number
of paragraphs in article

As shown in Figure 5, despite their similar overall per-
formance, the MLP decoder is more robust to long ar-
ticle lengths. The long tail is due to testing set distribu-
tion of few but extremely long articles. Performances
before lengths of around 75 paragraphs are therefore
more representative.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

1.0

1.5

2.0

2.5

3.0

3.5

model performance over article level depth
SimCSE MLP
SimCSE Greedy

Figure 6: SimCSE models performance over article
depth

Similarly, Figure 6 shows that the MLP decoder is also
more robust against article depth (height of the head-
ing tree for a given article), but both performed worse
with higher article depths. Since article levels are dis-
crete, we computed the mean JPL loss score over dif-
ferent article depths for each model, and plotted the
points in figure 6. The MLP and the greedy decoder
achieved similar scores at shallower documents, but
the MLP significantly outperforms the greedy decoder
when the article has deeper nested headings.

5.2 Embedding

Each of the embedding methods we used (FastText,
SimCSE, and Doc2Vec) are dominant at their respec-

tive scales (words, sentences, and paragraphs). We
adapted these embedding methods to our use case
in order to embed paragraphs from articles, and in
so doing have generated latent spaces that are differ-
ent than what the embedding methods were initially
designed for. In particular, note that what we de-
sire from paragraph embeddings has some structural
and relational information within it: the greedy de-
coder, for example, uses the cosine similarity between
paragraph vectors to determine if they belong under
the same subheading. There is more information that
could be useful to this subtask than simply semantic
meaning, which these embedding methods are devel-
oped for. In addition, we change the scales at which
FastText and SimCSE operate via a projection. For all
these reasons, we wish to evaluate how our encoding
techniques behave in our target domain of paragraphs
within articles.

To accomplish this, we can visualize the generated
paragraph encodings via dimensionality reduction.
We take paragraphs from several (N = 12) articles and
label them according to which article they came from.
We then apply principal component analysis (PCA) to
reduce the vectors to have 50 dimensions, on top of
which we apply t-distributed stochastic neighbor em-
bedding (tSNE) to reduce the vectors to 2 plottable di-
mensions. We look for clusters around particular arti-
cles and separation between distinct articles. The re-
sults for 4 different encoding techniques are graphed
below.

20 10 0 10 20

40

20

0

20

40

tSNE Plot by Paragraph Source (Projected FastText)
0
1
2
3
4
5
6
7
8
9
10
11

20 10 0 10 20 30 40 50 60

20

10

0

10

20

30

tSNE Plot by Paragraph Source (Projected SimCSE)
0
1
2
3
4
5
6
7
8
9
10
11

30 20 10 0 10 20 30

20

10

0

10

20

30
tSNE Plot by Paragraph Source (Averaged SimCSE)

0
1
2
3
4
5
6
7
8
9
10
11

30 20 10 0 10 20

20

10

0

10

20

tSNE Plot by Paragraph Source (Doc2Vec)
0
1
2
3
4
5
6
7
8
9
10
11

Figure 7: Paragraph embeddings with tSNE reduc-
tion visualized for: LSTM-Projected FastText, Aver-
aged SimCSE, LSTM-Projected SimCSE, and Doc2Vec.

8

We observe from the tSNE graphs in Figure 7 some in-
teresting phenomena. Importantly, we see that the av-
eraged SimCSE (bottom left) embeddings form very
nice clusters consisting of paragraphs from the same
article while maintaining a good distance between ar-
ticles. The Doc2Vec (bottom right) embedding space is
similarly nice, but with less separation of clusters. The
projected FastText (top left) embedding space is very
spread, and the projected SimCSE has decent cluster-
ing, but with a distinct lack of uniformity. In general,
we see that the averaged SimCSE embedding space
is the best in terms of both uniformity, separation of
clusters, and alignment. We discuss some potiential
conclusions to be drawn from this evaluation in 6.

5.3 Evaluation metrics

To compare different evaluation metrics, we use a
heuristic that if we slightly perturb a heading tree by
randomly adding and deleting headings, and com-
pose this perturbation sequentially, we should find
that for a given loss function, the loss between a
tree and the original tree should have high Spearman
(rank) correlation with the number of times the tree
has been perturbed from the original.

Formally, we perturbed by uniformly randomly delet-
ing each existing heading with some small probability
premove and then uniformly randomly adding a head-
ing on every possible range of paragraphs that are
currently under the same heading with some small
probability padd, where we compute these probabili-
ties such that the expected number of removed and
added headings in each round of perturbation is ex-
actly 1.

Since perturbation is noisy, we generated 10-step per-
turbation sequences over 10 random starting heading
trees from our training data, each sequence run 50
times, and computed the mean Spearman correlations
for each evaluation metric:

Metric Spearman Correlation

APPL 0.771± 0.239
JPL 0.843 ± 0.204

Elasticα=0.5 0.807± 0.235
Edit 0.842± 0.203

We found that JPL performed the best overall, closely fol-
lowed by Edit. Thus, we chose to use JPL as our evaluation
metric. All correlations had a p-value under 0.05.

5.4 Qualitative analysis

To sanity-check and visualize our model predictions, we
print some of the predicted heading trees produced by
one of our better-performing models, the Greedy-Doc2Vec
alongside their ground truth counterparts. One example is
shown in 8, with snippets of each paragraph printed for
illustration. Qualitatively examining these trees, we see
that the model successfully picks up on some of the para-
graph divisions from the ground truth tree – in the figure,
it correctly groups together paragraphs beginning with “In
September 2006...” and “In February 2011,” as well as the
first three paragraphs beginning with “Dan Dugan...,” “In
his youth...,” “Dugan first recorded...,” among other correct
headings.

At the same time, since the model predicts on local groups of
articles, it misses some common patterns among the article
heading trees. For example, it is customary for Wikipedia
articles to begin with 1-3 paragraphs which are always at
the highest depth level; in the case of 8, this is the first three.

5.5 Human performance

We collected 30 human predictions on different articles from
different participants and found that humans perform sig-
nificantly better than even our best model, with a JPL score
of 0.469 compared to 1.273 from Greedy-Averaged SimCSE
4.

Although we initially thought the task might be very dif-
ficult for humans to solve, this is evidently not the case.
However, it is worth noting that these are somewhat biased
results: humans often choose to skip long articles, which
are often the examples the models perform the worst on,
and the dataset of Wikipedia articles is also one that the
humans already have extensive exposure to, so they of-
ten employ tricks like recognizing familiar-looking articles
such as ones on TV show episodes, which have a very com-
mon Introduction-Plot-Reception format. The website de-
sign and input format also worked well, as human partic-
ipants had little trouble picking up the relatively unusual
task.

6 Conclusion

We approach a novel problem, article outlining, with an
encoder-decoder framework made of composable parts, and
experiment with variations on several different encoder em-
beddings: Doc2Vec, SimCSE, and FastText. We experiment
with and ablate different techniques for embedding and de-
coding: the best-performing model overall is the MLP with
SimCSE paragraph embeddings generated as an average of
frozen sentence embeddings 4. Generally, SimCSE is our
strongest embedding, as using it with averaging as well as

9

Figure 8: Ground truth (left) and predicted (right) heading trees for example article “Dan Dugan (audio engineer)”

with a projection via LSTM lead to some of the best results
among all of the different model-embedding combinations,
and the robustness of this embedding is supported by our
analysis of its intrinsic properties 7. We also propose the
JPL evaluation metric for comparing trees and substanti-
ate its superiority over other techniques by looking at rank-
correlations with sequentially perturbed trees 5.3. Overall,
we lay the groundwork for further research on paragraph
embeddings and this novel task of article outlining.

7 Future Work

As mentioned previously, our models are limited by both
time and computational resources and we were only able
to run on a fraction of the training set for the end-to-end
model, which still took upwards of 10 hours to train. Future
work should train on the entire WikiText dataset, and we
expect the outcome embedding would outperform our
current best models.

Since few deep learning works involve general tree-
structure data, we designed our own labeling and objective
functions for this task, which can serve as baselines for more
in-depth study of tree-structure data. While our numeric
representation of paragraph-relations are straightforward
for algorithmic decoders, these label vectors may not suit
the demand of deep learning decoders such as transformers.

Finally, the style and structure of Wikipedia articles
may differ from documents from other sources. Therefore,
future work should also run the proposed models on
different document sources to see which generalize better.

8 Acknowledgements

We would like to thank Professor Karthik Narasimhan for
his kind feedback and support.

References

[1] Piotr Bojanowski et al. “Enriching Word Vectors
with Subword Information”. In: Transactions of the
Association for Computational Linguistics 5 (2017),
pp. 135–146. ISSN: 2307-387X.

[2] Tianyu Gao, Xingcheng Yao, and Danqi Chen.
“Simcse: Simple contrastive learning of sentence
embeddings”. In: arXiv preprint arXiv:2104.08821
(2021).

[3] Stephen Merity et al. Pointer Sentinel Mixture
Models. 2016. arXiv: 1609.07843 [cs.CL].

10

https://arxiv.org/abs/1609.07843

[4] Le Quoc and Mikolov Tomas. “Distributed Rep-
resentations of Sentences and Documents”. In:
arXiv preprint arXiv:1405.4053 (2014).

11

	Introduction
	Related Work
	FastText
	SimCSE
	Doc2Vec

	Methods
	Task formalization
	Task evaluation
	Dataset
	Model architectures
	Human annotations

	Results
	Greedy decoder
	Recursive MLP
	End-to-end transformer

	Discussion
	Performance over Different Article Lengths and Depths
	Embedding
	Evaluation metrics
	Qualitative analysis
	Human performance

	Conclusion
	Future Work
	Acknowledgements

